Course Notes: Operational Semantics and the Parameterized Aspect Calculus

Curtis Clifton and Gary T. Leavens
Dept. of Computer Science
Iowa State University
226 Atanasoff Hall
Ames, IA 50011-1040 USA
\{cclifton,leavens\}@cs.iastate.edu

December 8, 2003

1 Motivation

1.1 Review [4, 7]

- Quantification

Defn. 1.1 (Quantified Statements) have an effect on many places in the program

- Obliviousness

Defn. 1.2 (Obliviousness) the execution of cross-cutting code A without any reference to A from the client code that A cross-cuts

- interaction
- without coupling
- Modular Reasoning

Understanding a module M based on:

- Behavioral Subtyping Analogy
- Behavioral subtyping in OOP: an overriding method must
- Behavioral subtyping is a discipline
* It places constraints on
* It provides the benefit of modular reasoning
- What about AOP?

Q: Can a language have quantification and obliviousness and allow modular reasoning?

1.2 Spectators and Assistants [3]

- Assistants
- can change the behavior of
- must be explicitly accepted by either
* the module containing the advised join points,
* or a client of that module

- Spectators

Defn. 1.3 A spectator is an aspect that

Q: What might that mean? What is "spectator-ness"?

- Safety and Liveness [10]

Defn. 1.4 A safety property says that
Defn. 1.5 A liveness property says that

* Before-advice that immediately went into an infinite loop would
* Before-advice that deleted all the files on your hard drive and then proceeded to the original method would
- Spectators and Safety

Some possible interpretations:

* A spectator cannot
* A spectator cannot

Q: Is it that simple? Are there any problems with these notions?

- Spectators and Liveness

Goal: Spectators must always allow the advised method
Q: Is this decidable?

What if we:

* Restrict control flow constructs in spectator advice
* Run spectators
* Approximate by
- Do you buy it?
- Which of these notions of "spectator-ness" could be statically enforced?
- Do spectators and assistants provide modular reasoning? How do we know?
- Can we implement reasonable aspect-oriented programs under these restrictions?

1.3 Why formal semantics?

Defn. 1.6 A formal semantics is a

- Makes proofs about language properties tractable
- Lingua franca of programming language researchers

1.4 Why core calculi?

Defn. 1.7 A core calculus is a programming language
Q: What is "essential"?
A core calculus:

- Eliminates
- Makes construction of
- Can be used to define
- Examples
- λ calculus and
- Object calculus and
- Parameterized aspect calculus and

2 Introduction to Formal Semantics

2.1 Kinds of Formal Semantics

Example: the semantics of a while loop

- Denotational [9]
- Strength:
- Map values in language to
- Model operations in language as
- Example:
\llbracket while E do $C ; \rrbracket_{s}=w(s)$, where $w(s)=i f\left(\llbracket E \rrbracket_{s}, w\left(\llbracket C \rrbracket_{s}\right), s\right)$
$\llbracket]_{s}$ is overloaded:
* $\llbracket E \rrbracket_{s}$: boolean
* $\llbracket C \rrbracket_{s}$: state
* Q: what is the type of the if function?
- Axiomatic [2]
- Strength:
- Map values in language to
- Describe operations using
- Uses Hoare triples: $\{P\} C\{Q\}$
* P is a
* Q is a
* For two states s and s^{\prime} we write:

$$
\left(s, s^{\prime}\right) \vDash\{P\} C\{Q\} \text { iff }
$$

- Example:

$$
\frac{C\{I\}}{\{I\} \text { while } E \text { do } C ;}
$$

I is the

- Operational
- Strength:
- Values in language
- Operations are described by

General form:

$$
\frac{\text { premise }_{1} \quad \ldots \quad \text { premise }_{n}}{E n v \vdash a \rightsquigarrow b}
$$

- Two sorts of operational semantics
* Small Step: a sub-term of a is replaced with a new sub-term to form b

Example:
The semantics of the if statement is:

$$
\begin{aligned}
& \hline \stackrel{\text { if true then } C_{0} \text { else } C_{1} \cdot s \rightarrow C_{0} \cdot s \quad \stackrel{\vdash \text { if false then } C_{0} \text { else } C_{1} \cdot s \rightarrow}{\qquad E \cdot s \rightarrow E^{\prime} \cdot s^{\prime}}}{\frac{\vdash E}{\vdash \text { if } E \text { then } C_{0} \text { else } C_{1} \cdot s \rightarrow}}
\end{aligned}
$$

and the semantics of statement sequencing is:

$$
\overline{\vdash \text { skip; } C_{1} \cdot s \rightarrow C_{1} \cdot s} \quad \overline{\vdash C_{0} ; C_{1} \cdot s \rightarrow}
$$

Using these, the semantics of the while statement is [8]:
\digamma while E do $C ; \cdot s \rightarrow$ if E then else skip $\cdot s$

* Big Step (a.k.a. "natural"): a is reduced to a value in one (big) step

Example:

$$
\begin{array}{ll}
\frac{\vdash E \cdot s \rightsquigarrow \text { false } \cdot s^{\prime}}{\vdash \text { while } E \text { do } C ; \cdot s \rightsquigarrow s^{\prime}} \\
\vdash E \cdot s \rightsquigarrow \text { true } \cdot s_{e} & \vdash C \cdot s_{e} \rightsquigarrow s^{\prime} \\
\hline \vdash \text { while } E \text { do } C ; \cdot s \rightsquigarrow s^{\prime \prime}
\end{array}
$$

- Other kinds of formal semantics
- Labelled transition systems
- Chemical semantics

2.2 Operational semantics for the λ calculus

- Small step semantics
- Rules
* Top-level, one-step reduction

$$
\beta
$$

$$
\overline{\vdash\left((\lambda x . e) e^{\prime}\right) \longmapsto e\left\{x \leftarrow e^{\prime}\right\}}
$$

* One-step reduction

Defn. 2.1 A context $\mathcal{C} \llbracket-\rrbracket$ is a term with $\mathcal{C} \llbracket e \rrbracket$ represents the result of

$$
\frac{\vdash e \hookrightarrow e^{\prime} \quad \mathcal{C} \llbracket-\rrbracket \text { is any context }}{\vdash \mathcal{C} \llbracket e \rrbracket \rightarrow \mathcal{C} \llbracket e^{\prime} \rrbracket}
$$

* Many-step reduction
\rightarrow is the
* Example
- Non-deterministic:

Can be made deterministic by restricting the shape of contexts.

* Normal order:
* Applicative order?
- Big step semantics
- Judgment: $\vdash e \rightsquigarrow v$ The term e
- Values
*
*
- Rules

β	Rator	VAL
$\overline{\vdash\left((\lambda x . e) e^{\prime}\right) \rightsquigarrow v}$	$\vdash\left(e e^{\prime}\right) \rightsquigarrow v$	$\overline{\vdash v \rightsquigarrow v}$

Q: Do these rules describe applicative order? normal order? some other order?

- Examples

$$
\frac{\overline{\vdash 3 \rightsquigarrow 3} \text { VALUE }}{\vdash((\lambda y .3)((\lambda z . z) 2)) \rightsquigarrow 3} \beta
$$

- \mathbf{Q} : Is this semantics deterministic?
- Abadi and Cardelli Proof Style [1, pp. 79-80]

$J u d g_{2}$	(RULE 2)
$J u d g_{3}$	(RULE 3)
$\int J u d g_{4}$	REASON
${ }^{\text {Judg }}$	(RULE 5)
$u d g_{6}$	

Example:

```
\(\int \vdash \vdash(\lambda y .3) \rightsquigarrow(\lambda y .3)\)
    \(\vdash((\lambda \mathbf{x} . \mathrm{x})(\lambda \mathrm{y} .3)) \rightsquigarrow(\lambda \mathrm{y} .3)\)
    \([\vdash 3 \rightsquigarrow 3\)
\(\stackrel{\vdash}{ }((\lambda y .3)((\lambda z . z) 2)) \rightsquigarrow 3\)
\(\vdash(((\lambda x . x)(\lambda y .3))((\lambda z . z) 2)) \rightsquigarrow 3\)

\subsection*{2.3 Untyped Object Calculus, \(\varsigma\)}
- Syntax
\[
\begin{array}{rrcl}
\text { variables } & x & \in & \text { Vars } \\
\text { labels } & l & \in & \text { Labels } \\
\text { terms } & a, b, c & ::= & x \\
& & \mid l & {\left[\overline{l_{i}=\varsigma\left(x_{i}\right) b_{i}}{ }^{i \in I}\right]} \\
& & & a . l \\
& & & a . l \Leftarrow \varsigma(x) b
\end{array}
\]
- Big step semantics
- Object

Red Object
\(\left.\stackrel{\vdash\left[{\overline{l_{i}=\varsigma\left(x_{i}\right) b_{i}}}^{i} \in I\right.}{ }\right] \rightsquigarrow\left[\overline{\bar{l}_{i}=\varsigma\left(x_{i}\right) b_{i}}{ }^{i \in I}\right]\)
Example: [pos= \(\varsigma(x) x . n, n=\varsigma(x) 2]\)
- Method Selection
\[
\begin{aligned}
& \left.\begin{array}{l}
\text { RED SELECT } \\
\qquad a \rightsquigarrow\left[\overline{l_{i}=\varsigma\left(x_{i}\right) b_{i}}\right.
\end{array}{ }^{i \in I}\right] \quad \vdash b_{j}\left\{\left\{x_{j} \leftarrow\left[\overline{l_{i}=\varsigma\left(x_{i}\right) b_{i}} i \in I\right]\right\} \rightsquigarrow v \quad j \in I\right. \\
& \vdash a . l_{j} \rightsquigarrow v
\end{aligned}
\]

Example: [pos= \(\varsigma(x) x . n, n=\varsigma(x) 2]\).pos
\[
\begin{aligned}
& \vdash[\text { pos }=\varsigma(x) x . n, n=\varsigma(x) 2] \rightsquigarrow[p o s=\varsigma(x) x . n, n=\varsigma(x) 2] \quad \text { RED OBJECT } \\
& \text { pos } \in\{\text { pos, } n\} \\
& \vdash[\operatorname{pos}=\varsigma(x) x . n, n=\varsigma(x) 2] \rightsquigarrow[\text { pos }=\varsigma(x) x . n, n=\varsigma(x) 2] \quad \text { Red ObJect } \\
& n \in\{\text { pos, } n\} \\
& \vdash 2 \rightsquigarrow 2 \text { Red Object } \\
& \vdash[\operatorname{pos}=\varsigma(x) x . n, n=\varsigma(x) 2] . n \rightsquigarrow 2 \\
& \text { Red Select } \\
& \text { Red Select }
\end{aligned}
\]
- Method update
\[
\begin{aligned}
& \begin{array}{l}
\text { RED UPDATE } \\
\left.\stackrel{\vdash a \rightsquigarrow\left[\overline{l_{i}=\varsigma\left(x_{i}\right) b_{i}}\right.}{ }=\frac{1}{}\right] \quad j \in I \\
\left.\stackrel{\vdash a . l_{j} \Leftarrow \varsigma(x) b \rightsquigarrow\left[l_{j}=\varsigma(x) b, \overline{l_{i}=\varsigma\left(x_{i}\right) b_{i}}\right.}{ }{ }^{i \in I \backslash j}\right]
\end{array}
\end{aligned}
\]

Q: What's the result of reducing this term: [pos=ऽ \((\mathrm{x}) \mathrm{x} . \mathrm{n}, \mathrm{n}=\varsigma(\mathrm{x}) 2\) ].n \(\mathrm{n} \Leftarrow \varsigma(\mathrm{x}) 3\)
Q: What about this one: [pos \(=\varsigma(x) x . n, n=\varsigma(x) 2]\).pos \(\Leftarrow \varsigma(x)\) x.n.succ
Q: What happens if we select pos on the result?
- Syntactic sugar
- Fields: methods in which
[pos= \(\varsigma(x) . n, n=2\) ] desugars to [pos=ऽ(x).n, \(n=2\) ].n := 3 desugars to
- Lambda expressions

Can translate untyped \(\lambda\) calculus into the \(\varsigma\) calculus.
Let \(\rangle\rangle \operatorname{map} \lambda\) calculus to \(\varsigma\) calculus as follows:
\[
\begin{aligned}
\langle x\rangle & =x \\
\left.\left\langle\left(e_{1} e_{2}\right)\right\rangle\right\rangle & =\left(《 e_{1}\right\rangle . a r g:=\left\langle\left\langle e_{2}\right\rangle\right) \cdot v a l \\
\langle(\lambda x . e)\rangle & =
\end{aligned}
\]

\section*{3 Parameterized Aspect Calculus, \(\varsigma_{\text {asp }}\) [5, 6]}

\subsection*{3.1 Changes vs. the object calculus}

Object calculus plus aspects
- Join point abstraction
- Each reduction step triggers
- Search uses a four-part abstraction of the reduction step
* Reduction kind, \(\rho\)
* Evaluation context, \(\mathcal{K}\)
* Target signature
- either the set of labels in the target object, or
- the name of a constant
* Invocation or update message
- either a label, or
- a functional constant
- The search semantics is specified by a
* PCDL is a parameter to the calculus, various PCDL may be used Q : How might this be useful?

Q: What problems might this cause?
* PCDL consists of two parts:
- Syntax of \(\varsigma_{\text {asp }}\)
- All object calculus terms
- Constants
\[
d \in \text { Consts } \quad f \in \text { FConsts }
\]
terms \(a, b, c \quad::=\ldots\)
| d
| a.f
- Advice
\[
\begin{array}{lrl}
p c d \in \mathcal{C} & \text { programs } & \mathcal{P} \quad::=a \otimes \overrightarrow{\mathcal{A}} \\
& \text { advice } & \mathcal{A}
\end{array}::=p c d \triangleright \varsigma(\vec{y}) b
\]
- Proceeding
\begin{tabular}{rlrl} 
terms \(\quad a, b, c \quad::=\) & \(\ldots\) \\
& \(\mid\) & \(\operatorname{proceed}_{\mathrm{VAL}}()\) \\
& \(\mid\) & \(\operatorname{proceed}_{\mathrm{IVK}}(a)\) \\
& \(\mid\) & \(\operatorname{proceed}_{\mathrm{UPD}}(a, \varsigma(x) b)\) \\
proceed closures & \(\pi\) & \(\mid:=\) & \(\pi\) \\
& & & \(\Pi_{\mathrm{VAL}}\{B, v\}()\) \\
& & \(\Pi_{\mathrm{IVK}}\{B, S, k\}(a)\) \\
& \(\mid\) & \(\Pi_{\mathrm{UPD}}\{B, k\}(a, \varsigma(x) b)\)
\end{tabular}
- Semantics
- Changes
* Object calculus reduction rules are changed to
* Rules are added for:
- Constants
- Object calculus terms to which advice applies
- Proceeding
- Helper functions
* Advice lookup
\[
\begin{aligned}
& \operatorname{advFor}_{\boldsymbol{M}}(j p, \bullet)=\bullet \\
& \operatorname{advFor}_{\boldsymbol{M}}(j p,(p c d \triangleright \varsigma(\vec{y}) b)+\overrightarrow{\mathcal{A}})= \\
& \quad \operatorname{match}(p c d \triangleright \varsigma(\vec{y}) b, j p)+\operatorname{advFor}_{\boldsymbol{M}}(j p, \overrightarrow{\mathcal{A}})
\end{aligned}
\]
* Proceed closure
\[
\begin{gathered}
\operatorname{close}_{\mathrm{VAL}}\left(\operatorname{proceed}_{\mathrm{VAL}}(),\{B, v\}\right)=\Pi_{\mathrm{VAL}}\{B, v\}() \\
\operatorname{close}_{\mathrm{IVK}}\left(\operatorname{proceed}_{\mathrm{IVK}}(a),\{B, S, k\}\right)= \\
\Pi_{\mathrm{IVK}}\{B, S, k\}\left(\operatorname{close} \mathrm{IVK}^{\mathrm{IVK}}(a,\{B, S, k\})\right) \\
\operatorname{close}_{\mathrm{UPD}}\left(\operatorname{proceed}_{\mathrm{UPD}}(a, \varsigma(x) b),\{B, k\}\right)= \\
\Pi_{\mathrm{UPD}}\{B, k\}\left(\operatorname{close}_{\mathrm{UPD}}(a,\{B, k\}), \varsigma(x) \text { close }_{\mathrm{UPD}}(b,\{B, k\})\right)
\end{gathered}
\]
- Objects and Basic Constants
\[
\text { values } v::=d \mid\left[\overline{l_{i}=\varsigma\left(x_{i}\right) b_{i}}{ }^{i \in I}\right]
\]

Red Val 0
\[
\frac{\mathcal{K} \vdash_{M, \overrightarrow{\mathcal{A}}} \diamond \quad \operatorname{advFor}_{\boldsymbol{M}}(\langle\mathrm{VAL}, \mathcal{K}, \operatorname{sig}(v), \epsilon\rangle, \overrightarrow{\mathcal{A}})=\bullet}{\mathcal{K} \vdash_{M, \overrightarrow{\mathcal{A}}} v \rightsquigarrow v}
\]

Red Val 1
\[
\begin{aligned}
& \mathcal{K} \vdash_{M, \overrightarrow{\mathcal{A}}} \diamond \quad \operatorname{advFor}_{M}(\langle\operatorname{VAL}, \mathcal{K}, \operatorname{sig}(v), \epsilon\rangle, \overrightarrow{\mathcal{A}})=\varsigma() b+B \\
& \operatorname{close}_{\mathrm{VAL}}(b,\{B, v\})=b^{\prime} \quad \text { va } \cdot \mathcal{K} \vdash_{M, \vec{A}} b^{\prime} \rightsquigarrow v^{\prime}
\end{aligned}
\]

Q: What, in plain English, is the meaning of these two rules?

Things to note:
* subscripts on the turnstile
* wellformedness premise
* Red Val 0 correspondence to Red Object
* advice lookup
- join point abstraction
- Required shape of result in Red Val 1
* proceed closure, and information stored
* evaluation context in last premise of Red Val 1
- Method Selection
\[
\begin{aligned}
& \text { RED SEL } 0 \text { (where } o \triangleq\left[{\overline{l_{i}=\varsigma\left(x_{i}\right) b_{i}}}^{i \in I}\right] \text { ) } \\
& \mathcal{K} \vdash_{M, \vec{A}} a \rightsquigarrow o \quad l_{j} \in \bar{l}_{i} \in I \\
& \frac{\operatorname{advFor}_{\boldsymbol{M}}\left(\left\langle\operatorname{IVK}, \mathcal{K}, \bar{l}_{i} i \in I, l_{j}\right\rangle, \overrightarrow{\mathcal{A}}\right)=\bullet \quad \mathrm{ib}\left(\overline{l_{i}} i \in I, l_{j}\right) \cdot \mathcal{K} \vdash_{M, \overrightarrow{\mathcal{A}}} b_{j}\left\{\left\{x_{j} \leftarrow o\right\} \rightsquigarrow v\right.}{\mathcal{K} \vdash_{M, \overrightarrow{\mathcal{A}}} a . l_{j} \rightsquigarrow v}
\end{aligned}
\]

Red Sel 1 (where \(o \triangleq\left[{\overline{l_{i}}=\varsigma\left(x_{i}\right) b_{i}}^{i \in I}\right]\) )
\[
\begin{aligned}
& \mathcal{K} \vdash_{M, \overrightarrow{\mathcal{A}}} a \rightsquigarrow o \quad l_{j} \in \bar{l}_{i}{ }^{i \in I} \quad \operatorname{advFor}_{\boldsymbol{M}}\left(\left\langle\mathrm{IVK}, \mathcal{K}, \bar{l}_{i}{ }^{i \in I}, l_{j}\right\rangle, \overrightarrow{\mathcal{A}}\right)=\varsigma(y) b+B \\
& \frac{\text { close }_{\mathrm{IVK}}\left(b,\left\{\left(B+\varsigma\left(x_{j}\right) b_{j}\right),{\overline{l_{i}}}^{i} \in I, l_{j}\right\}\right)=b^{\prime} \quad \text { ia } \cdot \mathcal{K} \vdash_{M, \vec{A}} b^{\prime}\{y \leftarrow o\} \rightsquigarrow v}{\mathcal{K} \vdash_{M, \overrightarrow{\mathcal{A}}} a l_{j} \rightsquigarrow v}
\end{aligned}
\]

Q: What, in plain English, is the meaning of these two rules?
Q: Where does the final value come from?

Things to note:
* correspondence of Red Sel 0 and Red Select
* join point abstraction
* shape of returned advice
* information stored in proceed closure
* evaluation context
- Functional Constant Application
\[
\begin{aligned}
& \text { RED FCONST } 0 \\
& \frac{\operatorname{advFor}_{M}\left(\left\langle\operatorname{IVK}, \mathcal{K}, \operatorname{sig}\left(v^{\prime}\right), f\right\rangle, \overrightarrow{\mathcal{A}}\right)=\bullet \quad \mathrm{K} \vdash_{M, \overrightarrow{\mathcal{A}}} a \rightsquigarrow v^{\prime}}{\mathcal{K} \vdash_{M, \overrightarrow{\mathcal{A}}} a . f \rightsquigarrow v} \operatorname{ib}\left(\operatorname{sig}\left(v^{\prime}\right), f\right) \cdot \mathcal{K} \vdash_{M, \overrightarrow{\mathcal{A}}} \delta\left(f, v^{\prime}\right) \rightsquigarrow v
\end{aligned}
\]

Red FConst 1
\[
\begin{gathered}
\mathcal{K}_{{ }_{M, \overrightarrow{\mathcal{A}}}} a \rightsquigarrow v^{\prime} \quad \operatorname{advFor}_{M}\left(\left\langle\mathrm{IVK}, \mathcal{K}, \operatorname{sig}\left(v^{\prime}\right), f\right\rangle, \overrightarrow{\mathcal{A}}\right)=\varsigma(y) b+B \\
\operatorname{close}_{\mathrm{IVK}}\left(b,\left\{B, \operatorname{sig}\left(v^{\prime}\right), f\right\}\right)=b^{\prime} \quad \text { ia } \cdot \mathcal{K} \vdash_{M, \overrightarrow{\mathcal{A}}} b^{\prime}\left\{y \leftarrow v^{\prime}\right\} \rightsquigarrow v \\
\mathcal{K} \vdash_{M, \overrightarrow{\mathcal{A}}} a . f \rightsquigarrow v
\end{gathered}
\]

Q: What is the meaning of these two rules?

Things to note:
* \(\mathbf{Q}\) : Aren't these rules non-deterministic given the selection rules?
* Q: How do these rules differ from the selection rules?

\section*{- Method Update}
\[
\begin{aligned}
& \text { RED UPD } \left.0 \text { (where } o \triangleq\left[\overline{l_{i}=\varsigma\left(x_{i}\right) b_{i}}{ }^{i \in I}\right]\right) \\
& \left.\frac{\mathcal{K} \vdash_{M, \overrightarrow{\mathcal{A}}} a \rightsquigarrow o \quad l_{j} \in \bar{l}_{i} i \in I \quad \text { advFor }{ }_{M}\left(\left\langle\mathrm{UPD}, \mathcal{K}, \bar{l}_{i}^{i \in I}, l_{j}\right\rangle, \overrightarrow{\mathcal{A}}\right)=\bullet}{\mathcal{K} \vdash_{M, \overrightarrow{\mathcal{A}}} a . l_{j} \Leftarrow \varsigma(x) b \rightsquigarrow\left[\overline{l_{i}=\varsigma\left(x_{i}\right) b_{i}}\right.}{ }^{i \in I \backslash\{j\}}, l_{j}=\varsigma(x) b\right]
\end{aligned}
\]

RED UpD 1 (where \(o \triangleq\left[{\overline{\bar{l}}=\varsigma\left(x_{i}\right) b_{i}}^{i \in I}\right]\) )
\[
\begin{aligned}
& \mathcal{K} \vdash_{M, \overrightarrow{\mathcal{A}}} a \rightsquigarrow o \quad \text { advFor }{ }_{\boldsymbol{M}}\left(\left\langle\mathrm{UPD}, \mathcal{K}, \bar{l}_{i}{ }^{i \in I}, l_{j}\right\rangle, \overrightarrow{\mathcal{A}}\right)=\varsigma(\text { targ }, \text { rval }) b^{\prime}+B \\
& \frac{\text { close }_{\text {UpD }}\left(b^{\prime},\left\{B, l_{j}\right\}\right)=b^{\prime \prime} \quad \text { ua } \cdot \mathcal{K} \vdash_{M, \vec{A}} b^{\prime \prime}\{\text { rval } \hookleftarrow b\{x \leftarrow \operatorname{targ}\}\}_{\text {targ }}\{\{\operatorname{targ} \leftarrow o\} \rightsquigarrow v}{\mathcal{K} \vdash_{M, \vec{A}} a \cdot l_{j} \Leftarrow \varsigma(x) b \rightsquigarrow v}
\end{aligned}
\]

Things to note:
* Correspondence of Red Upd 0 and Red Update
* Evaluation context in Red Upd 1
* Data used for proceed closure
* Shape of returned advice: two parameters
- targ, corresponds to
- rval, corresponds to
* two kinds of substitution
- \(b\{x \leftarrow c\}\) is normal capture-avoiding substitution

Key rules:
\[
\begin{aligned}
&(\varsigma(y) b)\{x \leftarrow c\} \triangleq \varsigma\left(y^{\prime}\right)\left(b\left\{y \leftarrow y^{\prime}\right\}\{x \leftarrow c\}\right) \\
& \text { where } y^{\prime} \notin F V(\varsigma(y) b) \cup F V(c) \cup\{x\} \\
& x\{x \leftarrow c\} \triangleq c \\
& y\{x \leftarrow c\} \triangleq y \quad \text { if } x \neq y
\end{aligned}
\]
- \(b^{\prime \prime}\{x \hookleftarrow c\}_{z}\) says: in \(b^{\prime \prime}\) replace all occurances of \(x\) with \(c\), capturing any
\[
\text { occurances of } z \text { in } c
\]

Key rules:
\[
\begin{aligned}
(\varsigma(z) b)\{x \hookleftarrow c\}_{z} \triangleq & \varsigma(z)\left(\{x \hookleftarrow c\}_{z}\right) \\
(\varsigma(y) b)\{x \hookleftarrow c\}_{z} \triangleq & \varsigma\left(y^{\prime}\right)\left(b\left\{y \leftarrow y^{\prime}\right\}\{x \hookleftarrow c\}_{z}\right) \\
& \text { if } y \neq z, \text { where } y^{\prime} \notin F V(\varsigma(y) b) \cup F V(c) \cup\{x\}
\end{aligned}
\]

Q: Which of these rules does the capturing?
* Why two kinds of substitution?
- \(b\{x \leftarrow \operatorname{targ}\}\) :
- targ-capturing substitution for \(r v a l\) in the advice body, \(b^{\prime \prime}\), lets advice author: capture occurrences of the self-parameter
or
not capture occurrences of the self-parameter
* Examples:
\[
[\mathrm{n}=\varsigma(\mathrm{y}) 0, \text { pos }=\varsigma(\mathrm{p}) \mathrm{p} . \mathrm{n}] . \mathrm{pos} \Leftarrow \varsigma(\mathrm{x}) \mathrm{x} . \mathrm{n} . \text { succ }
\]
- In the absence of advice, this would reduce to:

Q: What happens if we update n to 2 in this object and then select pos?

Advice designed to avoid capture:
\[
\varsigma(\text { targ,rval }) \text { proceed }_{\text {UPD }}(\text { targ, } \varsigma(z) \text { rval })
\]

Assuming no other advice:
\[
b^{\prime \prime}=\Pi_{\text {UPD }}\{\bullet, \operatorname{pos}\}(\operatorname{targ}, \varsigma(\mathbf{z}) \text { rval })
\]
\[
\begin{aligned}
& \left.\Pi_{\text {UPD }}\{\bullet, \operatorname{pos}\}(\text { targ, } \varsigma(z) \text { rval })\{r v a l \hookleftarrow \underline{x . n . s u c c}\{x \leftarrow \operatorname{targ}\}\}\right\}_{\text {targ }} \\
& \{\operatorname{targ} \leftarrow[n=\varsigma(y) 0, \text { pos }=\varsigma(p) p . n]\} \\
& =\underline{\Pi}_{U P D}\{\bullet, \operatorname{pos}\}(\operatorname{targ}, \varsigma(z) \text { rval })\{\text { rval } \hookleftarrow \quad\}_{\text {targ }} \\
& \{\operatorname{targ} \leftarrow[\mathrm{n}=\varsigma(\mathrm{y}) 0, \mathrm{pos}=\varsigma(\mathrm{p}) \mathrm{p} . \mathrm{n}]\} \\
& =\underline{\left.\Pi_{\text {Upم }}\{\bullet, \operatorname{pos}\}\right\}(\quad)\{\operatorname{targ} \leftarrow[n=\varsigma(y) 0, \operatorname{pos}=\varsigma(p) p . n]\}} \\
& =\Pi_{\text {UPD }}\{\bullet, \operatorname{pos}\}([n=\varsigma(y) 0, \operatorname{pos}=\varsigma(p) p . n], \varsigma(z)[n=\varsigma(y) 0, \operatorname{pos}=\varsigma(p) p . n] . n . s u c c)
\end{aligned}
\]

The last term will reduce to:
\[
[\mathrm{n}=\varsigma(\mathrm{y}) 0, \mathrm{pos}=\varsigma(\mathrm{z})[\mathrm{n}=\varsigma(\mathrm{y}) 0, \mathrm{pos}=\varsigma(\mathrm{p}) \mathrm{p} . \mathrm{n}] . \mathrm{n} \cdot \mathrm{succ}]
\]

Q: What happens if we update n to 2 in this object and then select pos?
Advice designed to capture:
\[
\varsigma(\text { targ,rval }) \text { proceed }{ }_{\text {UPD }}(\text { targ }, \varsigma(\text { targ }) \text { rval.succ) }
\]

Assuming no other advice was found in the advice lookup, then after closing the proceed \({ }_{\text {UpD }}\) sub-term, the substitutions for this advice are:
\[
\begin{aligned}
& \left.\Pi_{\text {UPD }}\{\bullet, \operatorname{pos}\}(\text { targ }, \varsigma(\operatorname{targ}) \text { rval.succ })\{\text { rval } \hookleftarrow \underline{x . n . s u c c}\{x \leftarrow \operatorname{targ}\}\}\right\}_{\text {targ }} \\
& \{\operatorname{targ} \leftarrow[n=\varsigma(y) 0, p o s=\varsigma(p) p . n]\} \\
& =\underline{\Pi}_{\text {UPD }}\{\bullet, \text { pos }\}(\operatorname{targ}, \varsigma(\text { targ }) \text { rval.succ })\{\text { rval } \hookleftarrow \text { targ.n.succ }\}_{\text {targ }} \\
& \{\operatorname{targ} \leftarrow[n=\varsigma(y) 0, \operatorname{pos}=\varsigma(p) p . n]\} \\
& =\underline{\Pi}_{U P D}\{\bullet, \operatorname{pos}\}(\operatorname{targ}, \varsigma(\operatorname{targ}) \quad . \text { succ }) \\
& \text { \{targ } \leftarrow[\mathrm{n}=\varsigma(\mathrm{y}) 0, \mathrm{pos}=\varsigma(\mathrm{p}) \mathrm{p} . \mathrm{n}]\} \\
& =\Pi_{\text {Upd }}\{\bullet, \operatorname{pos}\}([\mathrm{n}=\varsigma(\mathrm{y}) 0, \operatorname{pos}=\varsigma(\mathrm{p}) \text { p.n], } \varsigma(\operatorname{targ}) \quad . n . s u c c . s u c c)
\end{aligned}
\]

This term will reduce to:
\[
[\mathrm{n}=\varsigma(\mathrm{y}) 0, \mathrm{pos}=\varsigma(\operatorname{targ}) \text { targ.n.succ.succ }]
\]

Q: What happens if we update n to 2 in this object and then select pos?
- Proceeding
* General ideas:
- Two rules for each kind of advice
- Rules are very similar to the regular operations, except ...
- No additional advice lookup
- Proceed closure formed
* Proceeding from Value Advice

> RED VPRCD 0
> \(\frac{\mathcal{K} \vdash_{M, \overrightarrow{\mathcal{A}}} \diamond}{\mathcal{K} \vdash_{M, \vec{A}} \Pi_{\mathrm{VAL}}\{\bullet, v\}() \rightsquigarrow v}\)

Red VPrcd 1
\[
\frac{\mathcal{K}_{M_{M, \vec{A}} \diamond} \quad c \operatorname{lose}_{\mathrm{VAL}}(b,\{B, v\})=b^{\prime} \quad \mathrm{va} \cdot \mathcal{K} \vdash_{M, \vec{A}} b^{\prime} \rightsquigarrow v^{\prime}}{\mathcal{K} \vdash_{M, \overrightarrow{\mathcal{A}}} \Pi_{\mathrm{VAL}}\{(\varsigma() b+B), v\}() \rightsquigarrow v^{\prime}}
\]
* Proceeding from Selection Advice
\[
\text { Red SPrcd } 0
\]
\[
\frac{\mathcal{K} \vdash_{M, \overrightarrow{\mathcal{A}}} a \rightsquigarrow o \quad \operatorname{ib}(\bar{l}, l) \cdot \mathcal{K} \vdash_{M, \overrightarrow{\mathcal{A}}} b\{y \leftarrow o\} \rightsquigarrow v}{\mathcal{K} \vdash_{M, \overrightarrow{\mathcal{A}}} \Pi_{\mathrm{IVK}}\{\varsigma(y) b, \bar{l}, l\}(a) \rightsquigarrow v}
\]

Red SPrcd 1
\[
\frac{\mathcal{K} \vdash_{M, \overrightarrow{\mathcal{A}}} a \rightsquigarrow o \quad B \neq \bullet \quad \operatorname{close} e_{\mathrm{IVK}}(b,\{B, \bar{l}, l\})=b^{\prime} \quad \text { ia } \cdot \mathcal{K} \vdash_{M, \overrightarrow{\mathcal{A}}} b^{\prime}\{\{y \leftarrow o\} \rightsquigarrow v}{\mathcal{K} \vdash_{M, \overrightarrow{\mathcal{A}}} \Pi_{\mathrm{IVK}}\{(\varsigma(y) b+B), \bar{l}, l\}(a) \rightsquigarrow v}
\]

Q: Where does the target object in the 0 rule come from?
Q: Where does the method body evaluated in the 0 rule come from?
* Proceeding from Application Advice
\[
\begin{aligned}
& \text { RED FPRCD } 0, \quad \operatorname{Kb}(S, f) \cdot \mathcal{K} \vdash_{M, \overrightarrow{\mathcal{A}}} \delta\left(f, v^{\prime}\right) \rightsquigarrow v \\
& \mathcal{K} \vdash_{M, \overrightarrow{\mathcal{A}}} a \rightsquigarrow v^{\prime} \quad \operatorname{K} \vdash_{M, \overrightarrow{\mathcal{A}}} \Pi_{\mathrm{IVK}}\{\bullet, S, f\}(a) \rightsquigarrow v
\end{aligned}
\]

Red FPrcd 1
\[
\frac{\mathcal{K}_{{ }_{M}, \overrightarrow{\mathcal{A}}} a \rightsquigarrow v^{\prime} \quad \operatorname{close}_{\mathrm{IVK}}(b,\{B, S, f\})=b^{\prime} \quad \text { ia } \cdot \mathcal{K} \vdash_{M, \vec{A}} b^{\prime}\left\{y \leftarrow v^{\prime}\right\} \rightsquigarrow v}{\mathcal{K} \vdash_{M, \vec{A}} \Pi_{\mathrm{IVK}}\{(\varsigma(y) b+B), S, f\}(a) \rightsquigarrow v}
\]
* Proceeding from Update Advice
\[
\begin{aligned}
& \text { Red UPrcd } 0 \\
& \left.\frac{\mathcal{K} \vdash_{M, \vec{A}} a \rightsquigarrow\left[\bar{l}_{i}=\varsigma\left(x_{i}\right) b_{i}\right.}{}{ }^{i \in I}\right] \quad l_{j} \in{\overline{l_{i}}}^{i \in I}{ }_{\mathcal{K}, \vec{A}} \Pi_{\mathrm{UPD}}\left\{\bullet, l_{j}\right\}(a, \varsigma(x) b) \rightsquigarrow\left[\overline{l_{i}=\varsigma\left(x_{i}\right) b_{i}}{ }^{i \in I \backslash j}, l_{j}=\varsigma(x) b\right] \quad \\
& \text { Red UPrcd } 1 \\
& \mathcal{K} \vdash_{M, \vec{A}} a \rightsquigarrow o \quad \operatorname{close}_{\mathrm{UPD}}\left(b^{\prime},\left\{B, l_{j}\right\}\right)=b^{\prime \prime} \\
& \frac{\text { ua } \left.\cdot \mathcal{K} \vdash_{M, \vec{A}} b^{\prime \prime}\{r \text { rval } \hookleftarrow b\{x \leftarrow \text { targ }\}\}\right\}_{\text {targ }}\{\operatorname{targ} \leftarrow o\} \rightsquigarrow v}{\mathcal{K} \vdash_{M, \vec{A}} \Pi_{\mathrm{UPD}}\left\{\left(\varsigma(\text { targ }, \text { rval }) b^{\prime}+B\right), l_{j}\right\}(a, \varsigma(x) b) \rightsquigarrow v}
\end{aligned}
\]

\section*{4 Sample Point Cut Description Languages}

\subsection*{4.1 Natural Selection, \(M_{s}\)}

Let \(\boldsymbol{M}_{s}=\left\langle\mathcal{C}_{s}\right.\), match \(\left._{s}\right\rangle\), where \(\mathcal{C}_{s}::=[\bar{l}] . l\) and:
\[
\text { match } \left.\left._{s}(\bar{l}]\right] . l \triangleright \varsigma(\vec{y}) b,\langle\rho, \mathcal{K}, S, k\rangle\right)= \begin{cases}\langle\varsigma(\vec{y}) b\rangle & \text { if }(\rho=\operatorname{IvK}) \wedge(S=\bar{l}) \wedge(k=l) \\ \bullet & \text { otherwise }\end{cases}
\]

Example:
- Without advice:
\[
\text { [pos }=\varsigma(\text { p }) \text { p.n, } \mathrm{n}=\varsigma(\mathrm{y}) 2] \text {.pos } \rightsquigarrow 2
\]
- With before advice [pos, n].pos \(\triangleright \varsigma(x) \operatorname{proceed}_{\text {Ivk }}((x . n \Leftarrow \varsigma(y) 0))\) :
\[
[\text { pos }=\varsigma(\text { p }) \text { p. } n, n=\varsigma(y) 2] . \text { pos } \rightsquigarrow
\]
- With after advice [pos, n].pos \(\triangleright \varsigma(x) \operatorname{proceed}_{\text {Ivk }}(\mathrm{x})\). succ:
\[
\text { [pos }=\varsigma(\text { p p. p.n, } n=\varsigma(y) 2] . \text { pos } \rightsquigarrow
\]

\subsection*{4.2 General Matching, \(M_{G}\)}
- Allows queries over all portions of the join point abstraction.
- Reduction Kind
\[
\mathcal{C}_{G}::=\text { VAL } \mid \text { IVK } \mid \text { UPD } \mid \ldots
\]
- Message
\[
\mathcal{C}_{G}::=\ldots|\mathrm{k}=k| \ldots
\]
- Target signature
\[
\mathcal{C}_{G}::=\ldots|\mathbf{S}=k| \ldots
\]
- Evaluation Context
\[
\begin{aligned}
& \mathcal{C}_{G}::=\ldots|\mathrm{K} \in r| \ldots \\
& \text { context expr. } \quad r::=\epsilon|\mathrm{ib}(M, m)| \text { va | ia } \mid \text { ua } \mid \\
& \text {. }|r+r| r r \mid r^{*} \\
& \text { signatures } M::=d|\bar{l}| \text {. } \\
& \text { messages } m::=f|l| \text {. }
\end{aligned}
\]
- Boolean Combinations
\[
\mathcal{C}_{G}::=\ldots|\neg p c d| p c d \wedge p c d|p c d \vee p c d|
\]
- \(M_{G}\) is sufficient to model AspectJ
- Join points
```

AspectJ Point Cut
Modeled In \asp (}\mp@subsup{\boldsymbol{M}}{G}{}
call(void Point.pos())
call(Point.new())
execution(void Point.pos())
get(int Point.n)
set(int Point.n)
adviceexecution()
within(Point)
withincode(Point.pos)
cflow(Point.pos)
cflowbelow(Point.pos)
this(Point)
target(Point)

```

Q: Does cflowbelow consider advice execution to be "below" a cflow? Q: Does our model?

Q: What about the variable binding form of this?
Q: What else is missing?
- Open Classes (a.k.a. intertype declarations)
int Point.color = 0;
A model of this in \(\boldsymbol{M}_{G}\) uses two pieces of advice:
\[
(\mathrm{VAL} \wedge S=\{\mathrm{n}, \mathrm{pos}\}) \triangleright \varsigma()
\]
[orig=ऽ(s)proceed \({ }_{\text {VaL }}()\), \(\mathrm{n}=\varsigma(\mathrm{s})\) s.orig.n, pos \(=\varsigma(s)\) s.orig.pos, color \(=\varsigma(s) 0]\)
\((\) UPD \(\wedge S=\{\) orig,n,pos,color \(\} \wedge(k=n \vee k=\) pos \()) \triangleright\) \(\varsigma(t, r) \quad\left[\right.\) orig \(=\varsigma(s)\) proceed \(_{\text {UPD }}(t . o r i g, ~ \varsigma(t) r)\), \(\mathrm{n}=\varsigma(\mathrm{s})\) s.orig.n, pos=ऽ(s)s.orig.pos, color=s(s)t.color ]
Q: Why is the second piece of advice needed?

\subsection*{4.3 Other Models}
- Modeling HyperJ
- Can use \(M_{G}\)
- Like Open Classes, but two key differences:
* Special basic constants represent module names
* A model for abstact methods allows composed modules to call each other while remaining oblivious to the other modules implementation
- Modeling Adaptive Methods
- Basic Idea

Adaptive methods allow a
specification of a
over an
Specify:
*
*
Example:
- Is \(M_{G}\) sufficient?
- Keys to model in \(\varsigma_{\text {asp }}\)
* Use distinguished names to indicate fields of objects
* Extend \(M_{G}\) with
* Use the two parameters of update advice in a unique way
- Target object is used for dispatching to the appropriate code for the node
- R -value is used to pass a visitor (accumulator) object

\subsection*{4.4 Insights}
- Spectators and Assistants

Q: Can we study them using \(\varsigma_{\text {asp }}\) ?
Q: How might we add imperative features?
Q: Can we eliminate any features from \(\varsigma_{\text {asp }}\) ? Should we?
- Interaction of PCDL and base language

Q: How does the design of the PCDL effect reasoning in the base language?
- Comparisons

Q: What do we learn about similarities between the modeled langauges?
Q: Differences?

\subsection*{4.5 Decisions in the design of \(\varsigma_{\text {asp }}\)}
- Big step or little step?
- Functional or imperative?
- Include constants?
- Advice declarations or terms?

\section*{References}
[1] M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer Science. SpringerVerlag, New York, NY, 1996.
[2] G. Baumgartner. Axiomatic semantics, Jul 2000. http://www.cis.ohio-state.edu//gb/cis755/ slides/week4-wednesday.pdf.
[3] C. Clifton and G. T. Leavens. Spectators and assistants: Enabling modular aspect-oriented reasoning. Technical Report 02-10, Iowa State University, Department of Computer Science, Oct. 2002.
[4] C. Clifton and G. T. Leavens. Obliviousness, modular reasoning, and the behavioral subtyping analogy. Technical Report 03-01a, Iowa State University, Department of Computer Science, Mar. 2003.
[5] C. Clifton, G. T. Leavens, and M. Wand. Formal definition of the parameterized aspect calculus. Technical Report 03-12b, Iowa State University, Department of Computer Science, Nov. 2003.
[6] C. Clifton, G. T. Leavens, and M. Wand. Parameterized aspect calculus: A core calculus for the direct study of aspect-oriented languages. Technical Report 03-13, Iowa State University, Department of Computer Science, Oct. 2003. Submitted for publication.
[7] R. E. Filman and D. P. Friedman. Aspect-oriented programming is quantification and obliviousness. In M. Akşit, S. Clarke, T. Elrad, and R. E. Filman, editors, Aspect-Oriented Software Development. Addison-Wesley, Reading, MA, to appear.
[8] R. Rugina. Small-step operational semantics, Sep 2002. http://www.cs.cornell.edu/courses/ cs611/2002fa/lectures/lec05.ps.
[9] D. A. Schmidt. The Structure of Typed Programming Languages. Foundations of Computing Series. MIT Press, Cambridge, Mass., 1994.
[10] F. W. Vaandrager. Safety and liveness, Nov 2003. http://www.cs.kun.nl/fvaan/PV/SLIDES/ liveness.pdf.```

