
Com S 541 — Programming Languages 1 October 6, 2004

Homework 3: λProlog and Logic Programming
Due: October 14, 2004.
In this homework, you will learn a few basic skills in logic programming. One reason logic

programming is important is because it resembles formal specifications; it is useful to know how
these work, even if one does not specify formally. Some of the problems are geared towards this end.

Since the purpose of this homework is to ensure basic skills in logic programming and operational
semantics, this is an individual homework. That is, for this homework, you are to do the work on
your own, not in groups.

For all λProlog programs, you must run your code with a λProlog system, such as the Teyjus
system we recommend. You must also provide evidence that your program is correct (for example,
test cases). Hand in a printout of your code and your testing.

Unless we specifically request, your λProlog code does not have to run “backwards”; that is, you
do not have to test relations where the last argument is given and other arguments are sought. (But
you may want to see which ones can do that, just for fun.) In the examples you will see “no (more)
solutions” or “yes” printed; your program does not have to have exactly this output; that is, it could
have more solutions than our solution for some queries, or fewer.

You may use cut (!), not, and once in your code. But don’t get in to the mode of trying to
sprinkle cut throughout your code to make it work; cut should be used sparingly and you should
think about what you’re doing instead.

Besides Dale Miller’s book, especially chapters 2-4, see the λProlog resources available from the
course web page. These include several examples. You may want to read a tutorial on the concepts
of logic programming. For example, chapter 14 in Watt’s Programming Language Concepts and
Paradigms is a (very brief) introduction. You might also look in the first few chapters of Sterling
and Shapiro’s The Art of Prolog , which is an excellent book on the subject.

1 Lists

The next few problems deal with lists in λProlog. For more examples of list code in λProlog,
see the files in the Teyjus examples directory (which is /opt/teyjus/examples on the department
machines), particularly the utilities subdirectory. You’ll often have to parenthesize lists, for
example (1::nil), so it’s safer to always parenthesize them.

1



Specify the following relations in λProlog.

1. (5 points) The relation find last, whose signature is given by

sig find_last.
type find_last (list T) -> T -> o.

and is such that (find last L X) holds iff X is the last item in the list L. For example.

$ tjsim find_last
?- find_last nil 3.

no (more) solutions

?- find_last (1::2::3::nil) 3.

yes

?- find_last (1::2::3::nil) Y.

The answer substitution:
Y = 3

More solutions (y/n)? y

no (more) solutions

?- find_last L 3.

The answer substitution:
L = 3 :: nil

More solutions (y/n)? y

The answer substitution:
L = _T1 :: 3 :: nil

More solutions (y/n)? y

The answer substitution:
L = _T1 :: _T2 :: 3 :: nil

More solutions (y/n)? n

yes

?- stop.

2. (10 points) The relation consecutive whose signature is given by

sig consecutive.
type consecutive (list T) -> T -> T -> o.

where consecutive L X Y holds iff in the list L, the items X and Y appear, next to each other,
in that order. For example,

2



$ tjsim consecutive.
?- consecutive (1::2::nil) 1 2.

yes

?- consecutive (1::1::2::3::nil) 1 2.

yes

?- consecutive (1::nil) 1 2.

no (more) solutions

?- consecutive (4::1::3::2::nil) 1 2.

no (more) solutions

3. (15 points) The relation subst second whose signature is given by

sig subst_second.
type subst_first T -> T -> (list T) -> (list T) -> o.
type subst_second T -> T -> (list T) -> (list T) -> o.

where (subst second New Old L1 L2) holds if L2 is like L1 except that the second occurrence
of Old, if any, has been replaced by New. For example,

$ tjsim subst_second.
?- subst_second 33 1 (1::2::1::3::4::1::nil) L.

The answer substitution:
L = 1 :: 2 :: 33 :: 3 :: 4 :: 1 :: nil

?- subst_second 55 1 (3::1::nil) L.

The answer substitution:
L = 3 :: 1 :: nil

?- stop.

4. (5 points extra credit only) Using not and cut (!), but a minimum number of times, can you
program subst second so that when run forwards, it only gives one answer?

In the following problems, you are to build on the code in the unary.mod file available from the
web page and in

~leavens/WWW/ComS541/homework/unary.mod

(You should copy that file to your directory, and then accumulate it into your answer module.)

5. (10 points) Write a module modulo.mod that satisifes the following signature

sig modulo.
accum_sig unary.
type modulo nat -> nat -> nat -> o.

and such that (modulo X Y R) holds if R is X modulo Y. To include unary, your code in
modulo.mod should start as follows.

3



module modulo.
accumulate unary.
% ... your code below ...

Do not use the λProlog built-in integer arithmetic or to_int; instead give a direct specification
of modulo for unary numbers. Here are some examples.

$ tjsim modulo
[modulo] ?- to_nat 3 X.

The answer substitution:
X = s (s (s z))

[modulo] ?- to_nat 3 THREE, to_nat 2 TWO, modulo THREE TWO N, to_int N Z.

The answer substitution:
Z = 1
N = s z
TWO = s (s z)
THREE = s (s (s z))

[modulo] ?- to_nat 3 THREE, to_nat 7 SEVEN, modulo SEVEN THREE N, to_int N Z.

The answer substitution:
Z = 1
N = s z
SEVEN = s (s (s (s (s (s (s z))))))
THREE = s (s (s z))

[modulo] ?- to_nat 3 THREE, to_nat 7 SEVEN, modulo THREE SEVEN N, to_int N Z.

The answer substitution:
Z = 3
N = s (s (s z))
SEVEN = s (s (s (s (s (s (s z))))))
THREE = s (s (s z))

[modulo] ?- to_nat 3 THREE, modulo THREE THREE N, to_int N Z.

The answer substitution:
Z = 0
N = z
THREE = s (s (s z))

(Hint: you may need to think about the order of clauses if your program seems to be in an
infinite loop.)

2 Conceptual Modeling

The following explore the conceptual modeling (or database) aspects of λProlog.

6. (20 points) Encode your program of study (the classes you are taking as part of your degree)
as a set of λProlog facts and rules. Show how it would be used by writing some queries. (If
you don’t yet have a program of study for your degree, make one up.)

4



7. (40 points, extra credit) Encode the rules for getting a Ph.D. degree in computer science as a
set of λProlog facts and rules.

3 Describing Abstract Values

In this section we’ll look at how to use λProlog to specify abstract data types. The idea is much
like that in Chapter 6 of Watt’s Programming Languages: Syntax and Semantics, which you might
want to read.

8. (42 points) Specify in λProlog a module for homogeneous finite sets. Your module should be
called set.mod. It should start somewhat like the following.

module set.
has (set_insert Set Elem) Elem.
% ...

The signature set.sig specifies the types of what you need to program for this problem.

sig set.

kind set type -> type.

% set terms
type emptyset set T.
type set_insert set T -> T -> set T.

% set observers
type has set T -> T -> o.
type set_delete set T -> T -> set T -> o.
type set_union set T -> set T -> set T -> o.
type set_intersect set T -> set T -> set T -> o.
type set_size set T -> int -> o.
type subseteq set T -> set T -> o.
type set_equal set T -> set T -> o.

You should make a copy of the file set.sig, which is available from the web page and from

~leavens/WWW/ComS541/homework/set.sig

and put it in the directory where you have the your file set.mod.

You are to specify all the “observer” relations whose types are given in set.sig. The meaning
of these is intended to be the usual thing for sets. For example, the relation (has S E) holds
iff E is an element of S. The relation (set delete X E Z) holds iff Z has all the elements of X
except E. The relation (subseteq X Y) holds iff each element of X is also an element of Y.

Note that terms of type (set T) allow for duplicates; however, you are to specify the mathe-
matical content. For example, you should have:

$ tjsim set
[set] ?- set_size (set_insert (set_insert emptyset 3) 3) Z.

The answer substitution:
Z = 1

Similarly, order should not matter in testing for subsets or equality.

5



9. (30 points; extra credit) Write the previous problem so that all your relations run backwards.
(We will give appropriately scaled partial credit for doing part of this.)

10. (30 points; extra credit) In a separate module that accumulates the set module, Add the
constructor

type set_singleton T -> set T.

to sets and rewrite all of the observers to deal with singleton sets constructed using set singleton.
Why is this so painful? What could be done to make using singleton sets possible without
having to go through the pain?

11. (45 points; extra credit) Specify in λProlog a module for homogeneous finite doubly-ended
queues. Your module should be called dequeue.mod and should satisfy the following signature.
(The file is available from the web page and from the following.)

~leavens/WWW/ComS541/homework/dequeue.sig

sig dequeue. % syntax for doubly ended queues

kind deq type -> type.

% constructors
type emptydeq deq T.
type deq_precat deq T -> T -> deq T.
type deq_postcat deq T -> T -> deq T.

% observers
type deq_has deq T -> T -> o.
type deq_size deq T -> int -> o.
type deq_head deq T -> T -> o.
type deq_last deq T -> T -> o.
type deq_init deq T -> deq T -> o.
type deq_tail deq T -> deq T -> o.
type deq_count deq T -> T -> int -> o.
type deq_isEmpty deq T -> o.
type deq_equal deq T -> deq T -> o.

You are to specify all the “observer” relations. The meaning of these is intended to be the
usual thing for doubly-ended queues. The relation (deq has Q E) holds iff E is in the deque
Q. The relation (deq init Q1 Q2) holds iff Q2 has all the elements of Q1 except the last. The
relation (deq tail Q1 Q2) holds iff Q2 has all the elements of Q1, except the first. Etc.

12. (30 points; extra credit) Write the previous problem so that all your relations run backwards.
(We will give appropriately scaled partial credit.)

6


