Com S 541 — Programming Languages 1 September 23, 2004

Homework 1: Functional Programming, Haskell

Due: problems 1-9, Thursday, September 2, 2004; remaining problems Thursday, September 21,
2004.

In this homework you will learn: the basics of Haskell, how Haskell can be considered as a
domain-specific language for working with lists, basic techniques of recursive programming over
various types of data, and abstracting from patterns, higher-order functions, currying, and infinite
data. Many of the problems below exhibit polymorphism. The problems as a whole illustrate how
functional languages work without hidden side-effects.

Since the purpose of this homework is to ensure skills in functional programming, this is an
individual homework. That is, for this homework, you are to do the work on your own (not in
groups).

For all Haskell programs, you must run your code with Haskell 98 (for example, using hugs). We
suggest using the flags +t -u when running hugs. A script that does this automatically is provided
in the course bin directory, i.e., in /home/course/cs541/public/bin/hugs, which is also available
from the course web site. If you get your own copy of Haskell (from http://www.haskell.org),
you can adapt this script for your own use.

You must also provide evidence that your program is correct (for example, test cases). Hand in
a printout of your code and the output of your testing, for all questions that require code.

Be sure to clearly label what problem each function solves with a comment.

Read Thompson’s book, Haskell: The Craft of Functional Programming (second edition), chap-
ters 1-7, 9-14 and 16-18. You may also want to read a tutorial on the concepts of functional pro-
gramming languages, such as Hudak’s computing survey article mentioned in the “Introduction to
the Literature” handout, or the “Gentle Introduction to Haskell” (which is on-line at haskell.org)
for a different introduction to the language.

Some of the problems build on each other. Don’t hesitate to contact the staff if you are stuck at
some point.

Acknowledgment: many of these problems are due to John Hughes.

1. (30 points) Write a function
> delete_all :: (Eq a) => a —> ([a] —> [a])

that takes an item (of a type that is an instance of the Eq class) and a list, and returns a list
just like the argument list, but with the each occurrence of the item (if any) removed. For
example.

delete_all 3 ([J::[Int]) = [] :: [Int]

delete_all 1 [1, 2, 3, 2, 1, 2, 3, 2, 1]
delete_all 4 [1, 2, 3, 2, 1, 2, 3, 2, 1]
delete_all 3 [1, 2, 3] = [1, 2]

2, 3, 2
[13 2) 3) 3 b 23 35 2) 1]

Do this (a) using a list comprehension, and (b) by just using functions in the Haskell Prelude,
which is in the file /opt/hugs/1ib/hugs/libraries/Prelude.hs, assuming hugs is installed
in /opt/hugs. (c) by writing out the recursion yourself,

2. (suggested practice) Write a function

> delete_second :: (Eq a) => a —> ([a] -> [al])

that takes an item (of a type that has an == function defined for it) and a list, and returns a
list just like the argument list, but with the second occurrence of the item (if any) removed.
For example.

delete_second 3 ([]::[Int]) = []1 :: [Int]

delete_second 1 [1, 2, 3, 2, 1, 2, 3, 2, 1] =[1, 2, 3, 2, 2, 3, 2, 1]
delete_second 4 [1, 2, 3, 2, 1, 2, 3, 2, 1] =11, 2, 3, 2, 1, 2, 3, 2, 1]
delete_second 3 [1, 2, 3] = [1, 2, 3]

Do this both (a) by just using functions in the Haskell Prelude, and (b) by writing out the
recursion yourself. (Can this be done using a list comprehension?)

Hint: for part (b), you may need a helping function.

. (10 points) In Haskell, write a function

> associated :: (Eq a) => a -> [(a,b)] -> [b]

such that associated x pairs is the list, in order, of the second elements of pairs in pairs,
whose first element is equal to the argument x.

For example:

associated 3 ([]::[(Integer,Float)]) = []

associated 3 [(3,4), (5,7), (3,6), (9,3)] = [4, 6]
associated 2 [(1,’a’), (8,’c’), (2,’b’), (4,’d’)] = [’b’]
associated ’c’ (zip [’c¢’, ’c’> ..1 [1, 2 ..1) =[1, 2 ..]

Do this (a) using a list comprehension, and (b) using functions in the Haskell prelude.

. (30 points) Do problem 5.13 in the second edition on Thompson’s book (library database
functions).

. The following relate to modularization of numeric code using functional techniques and lazy
evaluation (you should read chapter 17 in Thompson’s book about laziness). In particular,
we will explore the Newton-Raphson algorithm. This algorithm computes better and better
approximations to the square root of a number n from a previous approximation x by using
the following function.

> next :: (Real a, Fractiomnal a) => a -> a —> a
>next nx=(x+n/x)/ 2

(a) (10 points) Using the iterate function in the Haskell Prelude, write a function
> approximations :: (Real a, Fractiomal a) => a -> a -> [al]

such that approximations n a0 returns the infinite list of approximations to the square
root of n, starting with a0. For example,

approximations 1.0 1.0 = [1.0, 1.0 ..]
take 5 (approximations 2.0 1.0) = [1.0, 1.5, 1.41667, 1.41422, 1.41421]
take 5 (approximations 64.0 1.0) = [1.0, 32.5, 17.2346, 10.474, 8.29219]

(b) (20 points) Define a function within

> within :: (Ord a, Num a) => a -> [a] -> a

that takes a tolerance, that is, a number epsilon, and an infinite list of numbers, and
looks down the list to find two consecutive numbers in the list that differ by no more than
epsilon; it returns the second of these. (It might never return if there is no such pair of
consecutive elements.) For example,

within 1.0 [1.0 ..] = 2.0
within 0.5 ([1.0, 32.5, 17.2346, 10.474, 8.29219, 8.00515]
++ [8.0, 8.0 ..1)
= 8.00515

(¢) (10 points) Using the two pieces above, make a function squareRoot
> squareRoot :: (Real a, Fractiomal a) => a -> a -> a -> a

that takes an initial guess, a tolerance epsilon, and a number, n and returns an approx-
imation to the square root of n that is within epsilon. For example,

squareRoot 1.0 0.0000001 2.0 = 1.41421
squareRoot 1.0 0.0000001 64.0 = 8.0

(d) (15 points) Write a function relativeSquareRoot
> relativeSquareRoot :: (Real a, Fractional a) => a -> a -> a -> a

which keeps iterating until the ratio of the difference between the last and the previous
approximation to the last approximation approaches 0, instead of waiting for the differ-
ences between the approximations themselves to approach zero. (This is equivalent to
iterating until the ratio of the last two approximations approaches 1.) This is better for
square roots of very large numbers, and for square roots of very small numbers. The
function relativeSquareRoot takes an initial approximation, a tolerance epsilon (for
how closely the ratio between the last two approximations must approach 1), and the
number n. (Hint, define a function relative that plays the role of within; use absolute
values.) For example:

3.0e+b5

relativeSquareRoot 1.0 0.1e-5 9.0e+10
-5 9. 3.0e-20

relativeSquareRoot 1.0 0O.1e 0e-40

6. (15 points) You may recall that the derivative of a function f at a point x can be approximated
by the following function.

> easydiff :: (Real a, Fractional a) => (a -> a) -> a -> a -> a
> easydiff f x delta = (f(x+delta) - f(x)) / delta

Good approximations are given by small values of delta, but if delta is too small, then
rounding errors may swamp the result. One way to choose delta is to compute a sequence of
approximations, starting with a reasonably large one. If (within epsilon) is used to select
the first approximation that is accurate enough, this can reduce the risk of a rounding error
affecting the result. Write a function

10.

> diffApproxims :: (Real a, Fractional a) => a -> (a -> a) -> a -> [al]

that takes an initial value for delta, and the function f, and a point x, and returns an infinite
list of approximations to the derivative of f at x, where at each step, the current delta is
halved. For example

take 9 (diffApproxims 500.0 (\x -> x*x) 20)

= [640.0, 290.0, 165.0, 102.5, 71.25, 55.625, 47.8125, 43.9062, 41.9531]
take 8 (diffApproxims 100.0 (\x -> x*x*x) 10)

= [13300.0, 4300.0, 1675.0, 831.25, 526.562, 403.516, 349.316, 324.048]

(15 points) Write a function

> differentiate :: (Real a, Fractional a) => a -> a —> (a -> a) —> a -> a

that takes a tolerance, epsilon, an initial value for delta, and the function £, and a point x,
and returns an approximation to the derivative of £ at x. For example.

differentiate 0.1e-6 500.0 (\x -> x*x) 20 = 40.0
differentiate 0.1e-6 100.0 (\x -> x*x*x) 10 = 300

(Hint: use the answer to the previous problem.)

(30 points; extra credit) Write a function in Haskell to do numerical integration, using the
ideas above.

(15 points) Write a function

> compose :: [(a -> a)] -> (a -> a)

that takes a list of functions, and returns a function which is their composition. For example.

compose [] [1, 2, 3] = [1, 2, 3]

compose [(\ x >x+ 1), \x>x+2)]4=7

compose [tail, tail, taill] [1, 2, 3, 4, 5] = [4, 5]
compose [(\Nx >3 :x), Ny —>4:ywl[OD=3:&:I[D

Hint: note that compose [] is the identity function.

(10 points) Write a function

> merge :: (Ord a) => [[a]] -> [a]

that takes a finite list of sorted finite lists and merges them into a single sorted list. A “sorted
list” means a list sorted in increasing order (using <); you may assume that the sorted lists are
finite. For example

merge ([[11::[[Int]l]l) = [1 :: [Int]

merge [[1, 2, 3]]1 = [1, 2, 3]

merge [[1, 3, 5, 7], [2, 4, 6]] = [1, 2, 3, 4, 5, 6, 7]

merge [[1,3,5,7], [2,4,6], [3,5,9,10,11,12]] = [1,2,3,3,4,5,5,6,7,9,10,11,12]
take 8 (merge [[1, 3, 5, 7], [1,2,3,4,5,6,7,8]]1) = [1, 1, 2, 3, 3, 4, 5, 5]

11.

12.

13.

(For 30 points extra credit, make your solution work when the sorted lists are not necessarily
finite; you can still assume that there are a finite number of sorted lists.)

(extra credit) Consider the following type as a representation of binary relations.

> type BinaryRel a b = [(a, b)]

(a) (10 points, extra credit) Write a function

> isFunction :: (Eq a, Eq b) => (BinaryRel a b) -> Bool

that returns True just when its argument satisfies the standard definition of a function;
that is, isFunction r is True just when for each pair (z,y) in the list r, there is no pair
(z,2) in T such that y # 2.

(b) (10 points, extra credit) Write a function

> brelCompose :: (Eq a, Eq b, Eq c) =>
> (BinaryRel a b) -> (BinaryRel b c) -> (BinaryRel a c)

that returns the relational composition of its arguments. That is, a pair (x,y) is in the
result if and only if there is a pair (z,z) in the first relation argument of the pair of
arguments, and a pair (z,y) in the second argument. For example,

brelCompose ([]::[(Int, Int)]) [(2,’b’), (3, ’c’)] = []
brelCompose []::[(Int, Int)] ([1::[(Int, Int)]) = []
brelCompose [(1,2),(2,3)] [(2,’b’), (3, ’c”)] = [(1, ’b’), (2, ’c’)]
brelCompose [(1,2),(1,3)] [(2,’b’), (3, ’c’)] = [(1, ’b’), (1, ’c’)]
brelCompose [(1,3), (2,3)] [(3,’b’), (3,’c?)]

= [(1,’b?), (1,°c?), (2,°b?), (2,°c?)]

(5 points) Define a function

> commaSeparate :: [String] -> String

that takes a list of strings and returns a single string that contains the given strings in the
order given, separated by ", ". For example,

commaSeparate [] = ""

commaSeparate ["a", "b"] = "a, b"

commaSeparate ["Monday", "Tuesday", "Wednesday", "Thurssday"]
= "Monday, Tuesday, Wednesday, Thursday"

(10 points) Define a function

> onSeparatelines :: [String] -> String

that takes a list of strings and returns a single string that, when printed, shows the strings on
separate lines. Do this both (a) using functions in the prelude, and (b) defining it explicitly
using recursion.

Hint: if you want your tests to show items on separate lines, use Haskell’s putStr function in
your testing. For example,

14.

15.

16.

17.

18.

Main> putStr (onSeparateLines ["mon","tues", "wed"])
mon

tues

wed :: I00)

(10 points) Define a function

> separatedBy :: String -> [String] -> String

That is a generalization of onSeparateLines and commaSeparated. Test it by using it to
define these other functions.

(5 points) Redefine the ++ operator on lists using foldr, by completing the following module
by adding arguments to foldr. You'll find the code for foldr in the Haskell prelude. (Hint:
you can pass the “:” constructor as a function by writing (:).)

module MyAppend where
import Prelude hiding ((++))
(++) :: [a] -> [a] -> [a]

xs ++ ys = foldr

(10 points) Define the function

> doubleAll :: [Integer] -> [Integer]

that takes a list of Integers, and returns a list with each of its elements doubled. Do this (a)
using a list comprehension, and (b) using foldr in a way similar to the previous problem.
(Hint: use a where to define the function you need to pass to foldr. You might want to use
function composition, written with an infix dot (.) in Haskell.) The following are examples.

doubleAll [1 = []
doubleAll [8,10] = [16,20]
doubleAll [1, 2 .. 500] = [2, 4 .. 1000]

(15 points) (a) Define the map functional using foldr. As part of your testing, use map to (a)
define doubleAll, and (b) to add 1 to all the elements of a list of Integers. (Hint: import the
Prelude hiding map in the module for this answer; see problem 15 above.)

Consider the following data type for trees, which represents a Tree of type a as a Node, which
contains an item of type a and a list of Trees of type a.

> data Tree a = Node a [Tree a] deriving Show

(a) (10 points) Define a function sumTree
> sumTree :: Tree Integer -> Integer

which adds together all the Integers in a Tree of Integers. For example,

sumTree (Node 4 []) = 4
sumTree (Node 3 [Node 4 [], Node 7 []]) = 14
sumTree (Node 10 [Node 3 [Node 4 [], Node 7 []],
Node 10 [Node 20 [], Node 30 [1, Node 40 [1]1]1) = 124

(b) (10 points) Define a function preorderTree
> preorderTree :: Tree a -> [a]

which takes a Tree and returns a list of the elements in its node in a preorder traversal.
For example,

preorderTree (Node True []) = [True]
preorderTree (Node 5 [Node 6 [], Node 7 [1]1) = [5, 6, 7]
preorderTree (Node 10 [Node 3 [Node 4 [], Node 7 [1],
Node 10 [Node 20 [], Node 30 [], Node 40 [1]1)
= [10, 3, 4, 7, 10, 20, 30, 40]

(¢) (15 points) Give a Haskell instance declaration (see chapter 12) that makes Tree an
instance of the type class Functor. (See the Prelude for the definition of the Functor
class.) Your code should start as follows.

instance Functor Tree where

fmap f
(d) (30 points) By generalizing your answers to the above problems, define a Haskell function
foldTree
> foldTree :: (a => b ->¢c) -> (¢ => b => b) > b -> Tree a -> ¢

that is analogous to foldr for lists. This should take a function to replace the Node
constructor, one to replace the (:) constructor for lists, and a value to replace the empty
list. You should, for example, be able to define sumTree, preorderTree, and the Functor
instance for fmap on Trees as follows.

> sumTree = foldTree (+) (+) O

> preorderTree = foldTree (:) (++) []

> instance Functor Tree where

> fmap f = foldTree (Node . f) (:) [I

19. (30 points) A set can be described by a “characteristic function” (whose range is the booleans)
that determines if an element occurs in the set. For example, the function ¢ such that
¢("coke”) = ¢("pepsi”) = True and for all other arguments x, ¢(x) = False is the charac-
teristic function for a set containing the strings "coke", "pepsi" and nothing else. Allowing
the user to construct a set from a characteristic function gives one the power to construct sets
that may “contain” an infinite number of elements (such as the set of all prime numbers).

Let the polymorphic type constructor Set be some polymorphic type that you decide on (you
can declare this with something like the following).

type Set a = ...
—-- or perhaps something like --
data Set a = ...

Hint: think about using a function type.

The operations on sets are described informally as follows.

(a) The function

20.

setSuchThat :: (a -> Bool) -> (Set a)

takes a characteristic function, f and returns a set such that each value x (of appropriate
type) is in the set just when fz is True.

(b) The function
unionSet :: Set a —-> Set a -> Set a

takes two sets, with characteristic functions f and g, and returns a set such that each
value z (of appropriate type) is in the set just when (fx) or (gz) is true.

(¢) The function
intersectSet :: Set a -> Set a -> Set a

takes two sets, with characteristic functions f and g, and returns a set such that each
value z (of appropriate type) is in the set just when both (fz) and (gx) are true.

(d) The function
memberSet :: Set a -> a -> Bool

tells whether the second argument is a member of the first argument.

(e) The function
complementSet :: Set a —-> Set a

which returns a set that contains everything (of the appropriate type) not in the original
set.

As examples, consider the following.

memberSet (setSuchThat (\ x -> x == "coke")) "coke" = True
memberSet (setSuchThat (\ x -> x == "coke")) "pepsi" = False
memberSet (complementSet (setSuchThat(\ x -> x == "coke"))) "coke" = False
memberSet (unionSet (setSuchThat (\ x -> x == "coke"))
(setSuchThat (\ x -> x == "pepsi")))
"pepsi" = True
memberSet (unionSet (setSuchThat(\ x -> x == "coke"))
(setSuchThat(\ x -> x == "pepsi")))
"coke" = True
memberSet (unionSet (setSuchThat(\ x -> x == "coke"))
(setSuchThat (\ x -> x == "pepsi")))
"sprite" = False
memberSet (intersectSet (setSuchThat(\ x -> x == "coke"))
(setSuchThat(\ x -> x == "pepsi")))
"coke" = False

Note (hint, hint) that the following equations must hold, for all f, g, and x of appropriate
types.

memberSet (unionSet (setSuchThat f) (setSuchThat g)) x = (£ x) || (g x)
memberSet (intersectSet (setSuchThat f) (setSuchThat g)) x = (f x) && (g x)
memberSet (setSuchThat f) x = f x

memberSet (complementSet (setSuchThat f)) x = not (f x)

(25 points) A wealthy client (okay, it’s the US Navy), wants you to head a team that will write
many programs to keep track of potentially infinite geometric regions.

Your task is to design a domain specific language embedded in Haskell for this, assuming that
the type of geometric regions is specified as follows.

21.

22.

23.

> type Point = (Int, Int)
> type Region = Point -> Bool

Design and implement a small set of primitives that can be used to construct and manipulate
Region values from within Haskell programs. For each primitive, give the type, the code, and
if necessary, some comments telling what it is supposed to do. You should have at least five
other primitives. Make at least one of them work on 2 or more regions in some way.

(25 points) Consider the following data definitions.

> data Exp = BoolLit Bool | IntLit Integer | CharLit Char
> | Sub Exp Exp

> | Equal Exp Exp

> | If Exp Exp Exp

> data 0Type = OBoolean | OInt | OChar | OWrong

> deriving (Eq, Show)

Write a function
> typeOf :: Exp -> OType

that takes an Exp and returns its 0Type. For example.

type0f (Equal (IntLit 3) (IntLit 4)) = OBoolean

type0f (Sub (IntLit 3) (IntLit 4)) = OInt

type0f (Sub (CharLit ’a’) (IntLit 4)) = OWrong

type0f (If (BoolLit True) (IntLit 4) (IntLit 5)) = OInt
type0f (If (BoolLit True) (IntLit 4) (BoolLit True)) = OWrong
type0f (If (IntLit 3) (IntLit 4) (IntlLit 5)) = OWrong

Your program should incorporate a reasonable notion of what the exact type rules are. (Exactly
what “reasonable” is left up to you; explain any decisions you feel the need to make.)

(10 points; extra credit) Based on the types below, which of each one of the following must
be either a constant or a constant function in Haskell? (Recall that a constant function is a
function whose output is always the same, regardless of its arguments.) Note: you are supposed
to be able to answer this from the information given.

a) random :: Double

)

b)

c) setGateNumbers :: [(String, Number)] -> ()
)
)

(
(b) changeAssoc :: key -> a -> [(key, a)] -> Maybe [(key, a)]
(
(d

(e) updateDB :: (String, Int) -> [Record] -> [Record]

todaysDate :: (Int, Int, Int)

(50 points total; extra credit) Read either one of the following two articles:

e Paul Hudak and Tom Makucevich and Syam Gadde and Bo Whong. Haskore music
notation-An Algebra of Music, Journal of Functional Programming, 6(3):465-483, May
1996.

24.

e Conal Elliott. An Embedded Modeling Language Approach to Interactive 3D and Mul-
timedia Animation. IEEE Transactions on Software Engineering, 25(3):291-308, May
1999.

or some other published research article in a journal or conference proceedings on implementing
domain-specific languages embedded in Haskell. (By a published research article, I mean an
article that is not in a trade journal (e.g., it has references at the end), and that is from a
refereed journal or conference. Publication means the article actually appeared in print, and
was not just submitted somewhere. So beware of technical reports on the web. It’s okay to
get a copy of a published article from the web, although I highly encourage you to physically
go to the library.)

Write a short (1 or 2 page maximum) review of the article, stating:

e (10 points) what the problem was that the article was claiming to solve,

e (20 points) the main points made in the article and what you learned from it,

e (20 points) what contribution it make vs. any related work mentioned in the article.
In your writing, be sure to digest the material; that is, don’t just select various quotes from
the article and string them together, instead, really summarize it. If you quote any text from

the paper, be sure to mark the quotations with quotation marks (“ and ”) and give the page
number(s).

If you do a different article than one of the two mentioned above, then hand in a copy of the
article with your review.

(10 points; extra credit) How does laziness help one write a domain specific embedded language
in Haskell? Give at least one example.

10

