
Course Notes: Operational Semantics and
the Parameterized Aspect Calculus

Curtis Clifton and Gary T. Leavens
Dept. of Computer Science

Iowa State University
226 Atanasoff Hall

Ames, IA 50011-1040 USA
{cclifton,leavens}@cs.iastate.edu

December 5, 2003

1 Motivation

1.1 Review [4, 7]

• Quantification

Defn. 1.1 (Quantified Statements) have an effect on many places in the program

as opposed to “in the underlying code”, which is biased toward the base + aspects
model

• Obliviousness

Defn. 1.2 (Obliviousness) the execution of cross-cutting code A without any reference to A from
the client code that A cross-cuts

– semantic interaction

– without syntactic coupling

• Modular Reasoning

Understanding a module M based on:

– the code in M ,

– the code surrounding M , and

– the signature and specification of any modules referred to by that code.

• Behavioral Subtyping Analogy

1

– Behavioral subtyping in OOP:
an overriding method must satisfy the specification of the overridden method

– Behavioral subtyping is a discipline

∗ It places constraints on the subtype programmer
∗ It provides the benefit of modular reasoning for clients

– What about AOP?
Q: Can a language have quantification and obliviousness and allow modular reasoning?

It isn’t clear.
Q: Is there a discipline like behavioral subtyping that would allow modular rea-
soning in aspect-oriented programming languages? in AspectJ?

1.2 Spectators and Assistants [3]

• Assistants

– can change the behavior of advised code

– must be explicitly accepted by either

∗ the module containing the advised join points,
(all clients see the effects)
∗ or a client of that module

(only that client sees the effects)

• Spectators

Defn. 1.3 A spectator is an aspect that “does not change the behavior of any other mod-
ule.”

Q: What might that mean? What is “spectator-ness”?

– Safety and Liveness [10]

Defn. 1.4 A safety property says that nothing bad happens

Defn. 1.5 A liveness property says that eventually something good happens

∗ Before-advice that immediately went into an infinite loop would be safe but not
live
∗ Before-advice that deleted all the files on your hard drive and then proceeded to

the original method would be live but not safe

– Spectators and Safety
Some possible interpretations:

∗ A spectator cannot modify any state but its own

2

∗ A spectator cannot violate the specification of advised modules

Q: Is it that simple? Are there any problems with these notions?

What about I/O?
Can we modularly find all the advised modules? What about quantification?

– Spectators and Liveness
Goal: Spectators must always allow the advised method to execute with its original
arguments and must return the result unchanged.
Q: Is this decidable?

No! by reduction from the halting problem.

What if we:

∗ Restrict control flow constructs in spectator advice to make the problem decid-
able?

Q: What constructs could we allow? loops? method calls? mathematical
expressions?

∗ Run spectators in a separate thread?

Q: What if advice isn’t finished before advised method is called again?

∗ Approximate by prohibiting spectators from using around-advice or throwing
checked exceptions?

• Do you buy it? [Direct discussion towards needing formal proof.]

– Which of these notions of “spectator-ness” could be statically enforced? All but the
specification safety property (and perhaps that could be if the specfications
were sufficiently restricted).

– Do spectators and assistants provide modular reasoning? How do we know?

– Can we implement reasonable aspect-oriented programs under these restrictions?

1.3 Why formal semantics?

Defn. 1.6 A formal semantics is a mathematically complete description of a programming
language

• Makes proofs about language properties tractable

• Lingua franca of programming language researchers

3

1.4 Why core calculi?

Defn. 1.7 A core calculus is a programming language stripped of all but its essential elements

Q: What is “essential”? Depends on the problem
A core calculus:

• Eliminates “noise”

• Makes construction of complete formal semantics tractable

• Can be used to define user-level languages

• Examples

– λ calculus and Haskell

– Object calculus and Smalltalk

– Parameterized aspect calculus and AspectJ?

2 Introduction to Formal Semantics

2.1 Kinds of Formal Semantics

Example: the semantics of a while loop

• Denotational [9]

– Strength: proving properties about the language

– Map values in language to mathematical entities, like {T,F} or the natural numbers

– Model operations in language as mathematical operations, like ∧, ¬, or +

– Example:

[[while E do C;]]s = w(s), where w(s) = if ([[E]]s, w([[C]]s), s)

s is the state, typically a mapping from variables to values
Read double brackets as “the meaning of foo in the state s”.
w is recursive

[[]]s is overloaded:

∗ [[E]]s: boolean
∗ [[C]]s: state
∗ Q: what is the type of the if function?

A: if :Boolean × State × State → State

• Axiomatic [2]

4

– Strength: proving properties about actual programs

– Map values in language to mathematical entities

– Describe operations using logical assertions, for example pre- and post-conditions
and loop invariants

– Uses Hoare triples: {P}C{Q}
∗ P is a pre-condition
∗ Q is a post-condition
∗ For two states s and s′ we write:

(s, s′) � {P}C{Q} iff [[P]]s ∧ ([[C]]s = s′) ∧ [[Q]]s′

We say “the Hoare triple {P}C{Q} is valid for the pair of states (s, s′).”

– Example:

{I ∧ E}C{I}
{I}while E do C;{I ∧ ¬E}

I is the loop invariant

Typically the rule used is actually:

P ⇒ I {I ∧ E}C{I} (I ∧ ¬E)⇒ Q

{P}while E do C;{Q}

• Operational

– Strength: clarity, guides implementation, proving behavioral properties of the
language

– Values in language represent themselves (typically)

– Operations are described by rewrite rules that reduce a term to a new term, given
that a set of premises is satisfied.
General form:

premise1 ... premisen

Env ` a b

Env is an environment
a and b might be terms, or might be sequences describing the state of some
virtual machine (e.g., term + state)

5

– Two sorts of operational semantics

∗ Small Step: a sub-term of a is replaced with a new sub-term to form b rules chain
horizontally
Example:
The semantics of the if statement is:

` if true then C0 else C1 · s→ C0 · s ` if false then C0 else C1 · s→ C1 · s

` E · s→ E′ · s′

` if E then C0 else C1 · s→ if E′ then C0 else C1 · s′

and the semantics of statement sequencing is:

` skip; C1 · s→ C1 · s
` C0 · s→ C ′

0 · s′

` C0; C1 · s→ C ′
0; C1 · s′

Using these, the semantics of the while statement is [8]:

` while E do C; · s→ if E then C; while E do C; else skip · s

Reduction terminates with 〈skip, s〉.

∗ Big Step (a.k.a. “natural”): a is reduced to a value in one (big) step rules stack
vertically
Sometimes when people (e.g., Abadi and Cardelli) say “operational seman-
tics”, they mean big step
Example:

` E · s false · s′

` while E do C; · s s′

` E · s true · se ` C · se s′ ` while E do C; · s′ s′′

` while E do C; · s s′′

The result of reducing a statement is just the state.
Reducing an expression just yields a value, assuming expressions cannot
have side effects.

• Other kinds of formal semantics

– Labelled transition systems (enhancement of small step op sem)
– Chemical semantics

6

2.2 Operational semantics for the λ calculus

• Small step semantics (review, but in Abadi and Cardelli format)

– Rules

∗ Top-level, one-step reduction omitting alpha and eta rules

β

` ((λx.e) e′)� e{{x← e′}}

A&C substitution style, and sometimes the x is omitted
∗ One-step reduction

Defn. 2.1 A context C[[−]] is a term with a single hole.
C[[e]] represents the result of filling the hole with the term e (possibly capturing
free variables of e).

` e� e′ C[[−]] is any context
` C[[e]]→ C[[e′]]

∗ Many-step reduction
� is the reflexive transitive closure of→
∗ Example

` ((λz.z) 2)� 2 C[[−]] = ((λy.3) −)
` ((λy.3) ((λz.z) 2))→ ((λy.3) 2)

` ((λy.3) 2)� 3 C[[−]] = −
` ((λy.3) 2)→ 3

Rules chain horizontally

– Non-deterministic:

((λy.3) ((λx.(x x)) (λx.(x x))))

Can be made deterministic by restricting the shape of contexts.

∗ Normal order: C[[−]] ::= − | (C[[−]] e)
∗ Applicative order?

Need a notion of values
C[[−]] ::= − | (v C[[−]]) | (C[[−]] e)
Need to restrict the β rule to reduce only terms of the form ((λx.e) v).

7

• Big step semantics

– Judgment: ` e v

The term e reduces to the value v

– Values

∗ λ terms, (λx.e)
∗ free variables

– Rules

β

` e{{x← e′}} v

` ((λx.e) e′) v

RATOR
` e v′ ` (v e′) v e is not a value

` (e e′) v

VAL

` v v

Q: Do these rules describe applicative order? normal order? some other order? normal
order
Homework: Give the big step semantics for applicative order reduction. E.C.:
implement interpreter based on big step semantics

– Examples

` 3 3
VALUE

` ((λy.3) ((λz.z) 2)) 3
β

Let them work out this one:

` (λy.3) (λy.3)
VALUE

` ((λx.x) (λy.3)) (λy.3)
β

` 3 3
VALUE

` ((λy.3) ((λz.z) 2)) 3
β

` (((λx.x) (λy.3)) ((λz.z) 2)) 3
RATOR

– Q: Is this semantics deterministic?
Yes, because only one rule is applicable to any term.

• Abadi and Cardelli Proof Style [1, pp. 79–80]� �
Judg2 (RULE 2)

?
Judg3 (RULE 3)�

Judg4 REASON
?
Judg5 (RULE 5)?

Judg6

Example:

8

� �
` (λy.3) (λy.3) VALUE

?
` ((λx.x) (λy.3)) (λy.3) β�
` 3 3 VALUE

?
` ((λy.3) ((λz.z) 2)) 3 β

?
` (((λx.x) (λy.3)) ((λz.z) 2)) 3 RATOR

2.3 Untyped Object Calculus, ς

• Syntax

variables x ∈ Vars
labels l ∈ Labels
terms a, b, c ::= x

| [li = ς(xi)bi
i∈I]

| a.l

| a.l⇐ ς(x)b

• Big step semantics (omitting small step semantics due to limited time)

Homework: Implement a stack object using the object calculus

– Object: a set of pairs of labels and methods

RED OBJECT

` [li = ς(xi)bi
i∈I] [li = ς(xi)bi

i∈I]

Example: [pos=ς(x)x.n, n=ς(x)2], where 2 is shorthand for an object that represents
the natural number 2.

– Method Selection: reduces the body of the named method, substituting object
for the self parameter

RED SELECT

` a [li = ς(xi)bi
i∈I] ` bj{{xj ← [li = ς(xi)bi

i∈I]}} v j ∈ I

` a.lj v

Example: [pos=ς(x)x.n, n=ς(x)2].pos�
` [pos = ς(x)x.n, n = ς(x)2] [pos = ς(x)x.n, n = ς(x)2] RED OBJECT

pos ∈ {pos, n}�
` [pos = ς(x)x.n, n = ς(x)2] [pos = ς(x)x.n, n = ς(x)2] RED OBJECT

n ∈ {pos, n}
` 2 2 RED OBJECT

?
` [pos = ς(x)x.n, n = ς(x)2].n 2 RED SELECT?

` [pos = ς(x)x.n, n = ς(x)2].pos 2 RED SELECT

9

– Method update: generates a new object, with the given method replacing the
named method

RED UPDATE

` a [li = ς(xi)bi
i∈I] j ∈ I

` a.lj ⇐ ς(x)b [lj = ς(x)b, li = ς(xi)bi
i∈I\j]

Q: What’s the result of reducing this term: [pos=ς(x)x.n, n=ς(x)2].n⇐ς(x)3
A: [pos=ς(x)x.n, n=ς(x)3]
Q: What about this one: [pos=ς(x)x.n, n=ς(x)2].pos⇐ς(x)x.n.succ
A: [pos=ς(x)x.n.succ, n=ς(x)2]
Q: What happens if we select pos on the result?
A: 3, assuming 2.succ 3

• Syntactic sugar

– Fields: methods in which the self parameter does not appear free
[pos=ς(x).n, n=2] desugars to [pos=ς(x).n, n=ς(y)2] where y is not free in 2
[pos=ς(x).n, n=2].n := 3 desugars to [pos=ς(x).n, n=3]

– Lambda expressions
Can translate untyped λ calculus into the ς calculus.
Let 〈〈〉〉map λ calculus to ς calculus as follows:

〈〈x〉〉 = x
〈〈(e1 e2)〉〉 = (〈〈e1〉〉.arg :=〈〈e2〉〉).val
〈〈(λx.e)〉〉 = [arg = 0, val = ς(s)〈〈e〉〉{{x← s.arg}}]

Homework: Translate some lambda calculus expressions and reduce them in
the object calculus

3 Parameterized Aspect Calculus, ςasp [5, 6]

3.1 Changes vs. the object calculus

Object calculus plus aspects plus constants

• Join point abstraction

– Each reduction step triggers a search for advice

– Search uses a four-part abstraction of the reduction step

∗ Reduction kind, ρ, one of {VAL, IVK, UPD}
∗ Evaluation context, K, represents the call stack
∗ Target signature, represents the “shape” of the target of the operation
· either the set of labels in the target object, or
· the name of a constant

∗ Invocation or update message

10

· either a label, or
· a functional constant

– The search semantics is specified by a point cut description language, or PCDL

∗ PCDL is a parameter to the calculus, various PCDL may be used
Q: How might this be useful?

A: can easily experiment with different PCDL
A: can restrict the set of join points that might be matched

Q: What problems might this cause?

A: might make the semantics more complex
A: possible that complexity is hidden in the PCDL, making the core calculus
“less core”

∗ PCDL consists of two parts:
· Point cut description syntax, C
· Advice matching function, match

• Syntax of ςasp

– All object calculus terms

– Constants

d ∈ Consts f ∈ FConsts terms a, b, c ::= . . .

| d

| a.f

Constants are things like natural numbers
Functional constants are operations like successor
The primary reason for introducing constants is to simplify examples, going for-
ward they may be eliminated–discuss this if time allows

– Advice

pcd ∈ C programs P ::= a⊗
−→
A

advice A ::= pcdB ς(−→y)b

11

A program consists of a base term (think “main”) and a sequence of advice
Advice maps a point cut description to a “naked method”, define naked
method

– Proceeding

terms a, b, c ::= . . .

| proceedVAL()
| proceedIVK(a)
| proceedUPD(a, ς(x)b)
| π

proceed closures π ::= ΠVAL{|B, v|}()
| ΠIVK{|B,S, k|}(a)
| ΠUPD{|B, k|}(a, ς(x)b)

Advice can contain proceed terms
proceed terms are converted to proceed closures during advice lookup
User programs cannot contain proceed closures

• Semantics

– Changes

∗ Object calculus reduction rules are changed to add advice lookup
∗ Rules are added for:
· Constants
· Object calculus terms to which advice applies
· Proceeding

– Helper functions

∗ Advice lookup

advForM (jp, •) = •

advForM (jp, (pcdB ς(−→y)b) +
−→
A) =

match(pcdB ς(−→y)b, jp) + advForM (jp,
−→
A)

Returns a list of naked methods
Invokes PCDL’s match function for each piece of advice

12

∗ Proceed closure

closeVAL(proceedVAL(), {|B, v|}) = ΠVAL{|B, v|}()

close IVK(proceedIVK(a), {|B,S, k|}) =
ΠIVK{|B,S, k|}(close IVK(a, {|B,S, k|}))

closeUPD(proceedUPD(a, ς(x)b), {|B, k|}) =
ΠUPD{|B, k|}(closeUPD(a, {|B, k|}), ς(x)closeUPD(b, {|B, k|}))

Takes proceed terms in advice and converts them to proceed closures,
squirreling away any information needed for proceeding.
These are the most interesting definitions, the others just recurse to sub-terms.

– Objects and Basic Constants

values v ::= d | [li = ς(xi)bi
i∈I]

RED VAL 0
K

M̀,
−→
A � advForM (〈VAL,K, sig(v), ε〉,

−→
A) = •

K
M̀,

−→
A v v

RED VAL 1
K

M̀,
−→
A � advForM (〈VAL,K, sig(v), ε〉,

−→
A) = ς()b + B

closeVAL(b, {|B, v|}) = b′ va · K
M̀,

−→
A b′ v′

K
M̀,

−→
A v v′

Q: What, in plain English, is the meaning of these two rules?

Things to note:

∗ subscripts on the turnstile
∗ wellformedness premise
∗ RED VAL 0 correspondence to RED OBJECT

∗ advice lookup
· join point abstraction

13

· Required shape of result in RED VAL 1
∗ proceed closure, and information stored
∗ evaluation context in last premise of RED VAL 1

– Method Selection

RED SEL 0 (where o , [li = ς(xi)bi
i∈I])

K
M̀,

−→
A a o lj ∈ li

i∈I

advForM (〈IVK,K, li
i∈I , lj〉,

−→
A) = • ib(li i∈I , lj) · K M̀,

−→
A bj{{xj ← o}} v

K
M̀,

−→
A a.lj v

RED SEL 1 (where o , [li = ς(xi)bi
i∈I])

K
M̀,

−→
A a o lj ∈ li

i∈I advForM (〈IVK,K, li
i∈I , lj〉,

−→
A) = ς(y)b + B

close IVK(b, {|(B + ς(xj)bj), li i∈I , lj |}) = b′ ia · K
M̀,

−→
A b′{{y ← o}} v

K
M̀,

−→
A a.lj v

Q: What, in plain English, is the meaning of these two rules?
Q: Where does the final value come from?

Things to note:

∗ correspondence of RED SEL 0 and RED SELECT

∗ join point abstraction
∗ shape of returned advice
∗ information stored in proceed closure
∗ evaluation context differences

– Functional Constant Application

δ(f, v′) means “apply the functional constant f to the value v′. δ is intentionally
underspecified, since we don’t say what the basic and functional constants
are. Suppose FConsts = {succ} and Consts is the natural numbers: δ(succ, 3) = 4.

14

RED FCONST 0
K

M̀,
−→
A a v′

advForM (〈IVK,K, sig(v′), f〉,
−→
A) = • ib(sig(v′), f) · K

M̀,
−→
A δ(f, v′) v

K
M̀,

−→
A a.f v

RED FCONST 1
K

M̀,
−→
A a v′ advForM (〈IVK,K, sig(v′), f〉,

−→
A) = ς(y)b + B

close IVK(b, {|B, sig(v′), f |}) = b′ ia · K
M̀,

−→
A b′{{y ← v′}} v

K
M̀,

−→
A a.f v

Q: What is the meaning of these two rules?

Things to note:

∗ Q: Aren’t these rules non-deterministic given the selection rules? Not if FConsts ∪
Labels = ∅
∗ Q: How do these rules differ from the selection rules?

No label presence test
Join point abstraction uses sig function
The 0 rule uses δ function

– Method Update

RED UPD 0 (where o , [li = ς(xi)bi
i∈I])

K
M̀,

−→
A a o lj ∈ li

i∈I advForM (〈UPD,K, li
i∈I , lj〉,

−→
A) = •

K
M̀,

−→
A a.lj ⇐ ς(x)b [li = ς(xi)bi

i∈I\{j}, lj = ς(x)b]

RED UPD 1 (where o , [li = ς(xi)bi
i∈I])

K
M̀,

−→
A a o advForM (〈UPD,K, li

i∈I , lj〉,
−→
A) = ς(targ , rval)b′ + B

closeUPD(b′, {|B, lj |}) = b′′ ua · K
M̀,

−→
A b′′{{rval ←↩ b{{x← targ}}}}targ{{targ ← o}} v

K
M̀,

−→
A a.lj ⇐ ς(x)b v

Things to note:

15

∗ Correspondence of RED UPD 0 and RED UPDATE

∗ Evaluation context in RED UPD 1
∗ Data used for proceed closure
∗ Shape of returned advice: two parameters
· targ , corresponds to the target object, o, of the update operation.
· rval , corresponds to the body, b, of the update’s r-value.

∗ two kinds of substitution
· b{{x← c}} is normal capture-avoiding substitution

Key rules: the rest just recurse over the grammar

(ς(y)b){{x← c}} , ς(y′)(b{{y ← y′}}{{x← c}})
where y′ /∈ FV (ς(y)b) ∪ FV (c) ∪ {x}

x{{x← c}} , c

y{{x← c}} , y if x 6= y

· b′′{{x ←↩ c}}z says: in b′′ replace all free occurances of x with c, capturing any
free occurances of z in c
Key rules: varref is same as above, the rest just recurse over the grammar

(ς(z)b){{x←↩ c}}z , ς(z)({{x←↩ c}}z) no renaming

(ς(y)b){{x←↩ c}}z , ς(y′)(b{{y ← y′}}{{x←↩ c}}z) renaming

if y 6= z, where y′ /∈ FV (ς(y)b) ∪ FV (c) ∪ {x}

Q: Which of these rules does the capturing?
A: the first

∗ Why two kinds of substitution? solicit ideas
· b{{x ← targ}}: renames the self parameter in the body, b, of the original

r-value
· targ-capturing substitution for rval in the advice body, b′′, lets advice author:

capture occurrences of the self-parameter, by placing rval under a ς(targ)
binder
or
not capture occurrences of the self-parameter, by not placing rval under a
binder or by placing it under a non-targ binder

∗ Examples:

[n=ς(y)0, pos=ς(p)p.n].pos⇐ ς(x)x.n.succ

· In the absence of advice, this would reduce to:

[n=ς(y)0, pos=ς(x)x.n.succ]

Q: What happens if we update n to 2 in this object and then select pos?
A: We get back 3.

16

· Advice designed to avoid capture: targ does not appear bound in b′′

ς(targ,rval)proceedUPD(targ, ς(z)rval)

fixes the value of the pos method to the result of evaluating the new
method body, x.n.succ, substituting the original target object for x:

Assuming no other advice:

b′′ = ΠUPD{|•, pos|}(targ, ς(z)rval)

Underbars indicate target of next substitution

ΠUPD{|•, pos|}(targ, ς(z)rval){{rval←↩ x.n.succ{{x← targ}}}}targ

{{targ← [n=ς(y)0, pos=ς(p)p.n]}}
= ΠUPD{|•, pos|}(targ, ς(z)rval){{rval←↩ targ.n.succ}}targ

{{targ← [n=ς(y)0, pos=ς(p)p.n]}}
= ΠUPD{|•, pos|}(targ, ς(z)targ.n.succ){{targ← [n=ς(y)0, pos=ς(p)p.n]}}
= ΠUPD{|•, pos|}([n=ς(y)0, pos=ς(p)p.n], ς(z)[n=ς(y)0, pos=ς(p)p.n].n.succ)

The last term will reduce to:

[n=ς(y)0, pos=ς(z)[n=ς(y)0, pos=ς(p)p.n].n.succ]

Q: What happens if we update n to 2 in this object and then select pos?
A: We get back 1!
· Advice designed to capture: because rval appears under a targ binder

ς(targ,rval)proceedUPD(targ,ς(targ)rval.succ)

uses the body of the update’s r-value without causing it to be reduced

Assuming no other advice was found in the advice lookup, then after closing
the proceedUPD sub-term, the substitutions for this advice are:

ΠUPD{|•, pos|}(targ,ς(targ)rval.succ) {{rval←↩ x.n.succ{{x← targ}}}}targ

{{targ← [n=ς(y)0, pos=ς(p)p.n]}}
= ΠUPD{|•, pos|}(targ,ς(targ)rval.succ){{rval←↩ targ.n.succ}}targ

{{targ← [n=ς(y)0, pos=ς(p)p.n]}}
= ΠUPD{|•, pos|}(targ,ς(targ)targ.n.succ.succ) capture!

{{targ← [n=ς(y)0, pos=ς(p)p.n]}}
= ΠUPD{|•, pos|}([n=ς(y)0, pos=ς(p)p.n], ς(targ) targ.n.succ.succ)

17

The last targ is not free and so isn’t replaced.
(Those last two targ’s should really be renamed, but this is alpha equiva-
lent.)

This term will reduce to:

[n=ς(y)0, pos=ς(targ)targ.n.succ.succ]

Q: What happens if we update n to 2 in this object and then select pos?
A: We get back 4!

– Proceeding

∗ General ideas:
· Two rules for each kind of advice one for proceeding to lower precedence

advice, one for proceeding to original operation
· Rules are very similar to the regular operations, except . . .
· No additional advice lookup subsequent advice and original operation

are taken from the proceed closure
· Proceed closure formed lazily

∗ Proceeding from Value Advice

RED VPRCD 0
K

M̀,
−→
A �

K
M̀,

−→
A ΠVAL{|•, v|}() v

RED VPRCD 1
K

M̀,
−→
A � closeVAL(b, {|B, v|}) = b′ va · K

M̀,
−→
A b′ v′

K
M̀,

−→
A ΠVAL{|(ς()b + B), v|}() v′

∗ Proceeding from Selection Advice

RED SPRCD 0
K

M̀,
−→
A a o ib(l, l) · K

M̀,
−→
A b{{y ← o}} v

K
M̀,

−→
A ΠIVK{|ς(y)b, l, l|}(a) v

RED SPRCD 1
K

M̀,
−→
A a o B 6= • close IVK(b, {|B, l, l|}) = b′ ia · K

M̀,
−→
A b′{{y ← o}} v

K
M̀,

−→
A ΠIVK{|(ς(y)b + B), l, l|}(a) v

Q: Where does the target object in the 0 rule come from?
A: the proceed closure’s argument
Q: Where does the method body evaluated in the 0 rule come from?
A: the proceed closure’s thunk not the target object

18

∗ Proceeding from Application Advice

RED FPRCD 0
K

M̀,
−→
A a v′ ib(S, f) · K

M̀,
−→
A δ(f, v′) v

K
M̀,

−→
A ΠIVK{|•, S, f |}(a) v

RED FPRCD 1
K

M̀,
−→
A a v′ close IVK(b, {|B,S, f |}) = b′ ia · K

M̀,
−→
A b′{{y ← v′}} v

K
M̀,

−→
A ΠIVK{|(ς(y)b + B), S, f |}(a) v

∗ Proceeding from Update Advice

RED UPRCD 0
K

M̀,
−→
A a [li = ς(xi)bi

i∈I] lj ∈ li
i∈I

K
M̀,

−→
A ΠUPD{|•, lj |}(a, ς(x)b) [li = ς(xi)bi

i∈I\j , lj = ς(x)b]

RED UPRCD 1
K

M̀,
−→
A a o closeUPD(b′, {|B, lj |}) = b′′

ua · K
M̀,

−→
A b′′{{rval ←↩ b{{x← targ}}}}targ{{targ ← o}} v

K
M̀,

−→
A ΠUPD{|(ς(targ , rval)b′ + B), lj |}(a, ς(x)b) v

19

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer Science. Springer-
Verlag, New York, NY, 1996.

[2] G. Baumgartner. Axiomatic semantics, Jul 2000. http://www.cis.ohio-state.edu/˜gb/cis755/
slides/week4-wednesday.pdf.

[3] C. Clifton and G. T. Leavens. Spectators and assistants: Enabling modular aspect-oriented
reasoning. Technical Report 02-10, Iowa State University, Department of Computer Science,
Oct. 2002.

[4] C. Clifton and G. T. Leavens. Obliviousness, modular reasoning, and the behavioral sub-
typing analogy. Technical Report 03-01a, Iowa State University, Department of Computer
Science, Mar. 2003.

[5] C. Clifton, G. T. Leavens, and M. Wand. Formal definition of the parameterized aspect calcu-
lus. Technical Report 03-12b, Iowa State University, Department of Computer Science, Nov.
2003.

[6] C. Clifton, G. T. Leavens, and M. Wand. Parameterized aspect calculus: A core calculus for
the direct study of aspect-oriented languages. Technical Report 03-13, Iowa State University,
Department of Computer Science, Oct. 2003. Submitted for publication.

[7] R. E. Filman and D. P. Friedman. Aspect-oriented programming is quantification and obliv-
iousness. In M. Akşit, S. Clarke, T. Elrad, and R. E. Filman, editors, Aspect-Oriented Software
Development. Addison-Wesley, Reading, MA, to appear.

[8] R. Rugina. Small-step operational semantics, Sep 2002. http://www.cs.cornell.edu/courses/
cs611/2002fa/lectures/lec05.ps.

[9] D. A. Schmidt. The Structure of Typed Programming Languages. Foundations of Computing
Series. MIT Press, Cambridge, Mass., 1994.

[10] F. W. Vaandrager. Safety and liveness, Nov 2003. http://www.cs.kun.nl/˜fvaan/PV/SLIDES/
liveness.pdf.

20

