
Com S 541 — Programming Languages 1 December 4, 2003

Homework 5: Semantics of AspectJ
Due: Tuesday, November 18, 2003.
This homework can be done in groups or individually. Its purpose is to help you explore the

semantics of AspectJ.
Don’t hesitate to contact the staff if you are not clear about what to do.
See the syllabus for readings for this homework, which include the article by Kiczales, et al. we

passed out, as well as the material on the aspectj.org website.

1. (50 points) Find and write down, as precisely as you can, AspectJ’s type checking rules for
the parts of the language having to do with advice declarations and pointcut declarations.
(You can ignore features related to static introductions, aspects as a whole, and the “declare”
primitive.) These are rules that AspectJ actually either documents or enforces.

For maximum credit, you should use the type-inference rule style given in class for the simply-
typed λ-calculus. (But you can use math with English explanations if necessary.)

Please include an example, showing how the rule’s violation gives a type error, for each rule
you find.

If you find more than 10 rules, or have more than 3 pages of text, you can stop, unless you are
working in a group, in which case you should multiply these limits by the number of people
in your group. Of course, if you have covered all of the rules for the relevant syntax, then you
should also stop.

For example, as we discussed in class, suppose that we use type checking judgements for
statements, expressions, point cut descriptions, advice declarations, and subtyping judgments
in the following forms:

Types;TE ` E : exp JT ↑ ES (1)
Types;TE ` B : comm JT ↑ ES (2)
Types;TE ` PC : pntct TE ′ (3)
Types;TE ` AD : decl {} (4)

Types ` ES′ <: ES (5)

where the assumptions Types;TE contains information about the program’s types, in Types,
a type environment in TE , and E is an expression, B a body (statement), PC a pointcut
declaration, AD an advice declaration, JT a Java type (i.e., one in Types), and ES is a set
of exception types. Thus form (1) says that with assumptions in Types;TE , the expression
E type checks with type JT and may throw checked exceptions from the set ES. Similarly,
form (2) says that with assumptions in Types;TE , the body B type checks, may return (via a
return statement) type JT , and may throw checked exceptions from the set ES. Form (3) says
that a pointcut typechecks and its type is pntct TE ′, where I’m thinking of TE ′ containing
information about what “bindings” are made by args, this, and target pointcuts. Form
(4) says that an advice declaration type checks okay under the given assumptions; its type
contains an empty type environment, as it’s always useful to have declaration types contain
type environments that map the names declared to their types [2]. Finally, judgement (5) says
that for each exception type JT ′ in ES′, there is some exception type JT in ES such that
Types ` JT ′ <: JT . I can’t promise these judgements have all the information you might want
in them.

Then we might have something like the following, which says that a formal declared in a
before advice is available in the pointcut and body of that advice with the same type, that
the pointcut must “bind” the formal (since the resulting type of PC contains the miniature

1



environment {I : JT}), and that the body cannot use return to return a value, and that it
may not throw any checked exceptions (since none were declared on the advice).

Types;TE , I : JT ` PC : pntct {x : JT},
Types;TE , I : JT, this : JTc ` B : comm void ↑ ES′,
Types ` ES′ <: {}
Types;TE ` before(JT I) : PC { B } : decl {}

if (aspect : JTc) ∈ TE ,

Note that we put this in the environment to allow the body to have the correct type for
the this expression, and we got its type from the special variable aspect, which the rule for
aspect declarations has to place in the environment TE . We would have to define subtyping on
exception sets to make sense of the judgement Types ` ES′ <: ES. Also, this rule is intended
only as an example. It’s certainly a special case. So you may need to change the types and
typing rules for various parts of such a rule to fit in with what you understand.

An example that illustrates this rule is the following.

1 public aspect Before1Arg {

2 before (Float f)

3 : args(f) { // (binding for formal f, ok)

4 Float g = f; // (f has type Float, ok)

5 f = true; // illegal, f has type Float

6 }

7

8 before (Float f)

9 : args(String) { // illegal, no binding for f

10 return 3.14159; // illegal, no result in before advice

11 }

12 }

The above example produces the following output.

Before1Arg.java:8 formal unbound in pointcut

Before1Arg.java:5 Type mismatch: cannot convert from boolean to Float

f = true; // illegal, f has type Float

^^^^

Before1Arg.java:10 Void methods cannot return a value

return 3.14159; // illegal, no result in before advice

^^^^^^^^^^^^^^

3 errors

Note that you don’t need to use all this (or any) formalism if it’s too difficult for you. For
example, you could state the above rule by simply writing some version of the English in the
paragraph before it, and giving an example.

2. (30 points) Describe type checking rules related to the parts of AspectJ described in the
previous problem that AspectJ does not currently document or enforce, but which it should.
For each of these, give an example, and a description of why the language’s users would benefit
from your new rules.

Again, describe your new rules as precisely as you can. You can stop if you find more than 3
rules or more than 2 pages of text, unless you are working in a group, in which case you should
multiply these limits by the number of people in your group. Again, if you have achieved some
sort of completeness, you can also stop.

3. (30 points) What kinds of advice in AspectJ can be considered syntactic sugars? For each
of these, if any, describe how to desugar the advice to other kinds of advice. Give a working
example, which runs in AspectJ, and an explanation of why it should work.

2



4. (50 points; extra credit) Describe type checking rules related to other parts of AspectJ that
AspectJ does not currently document or enforce, but which it should.

5. (100 points; extra credit) Describe how AspectJ’s point cuts could be made less dependent on
implementation details, while retaining the language’s “obliviousness” property.

References

[1] AspectJ Team. The AspectJ programming guide. Available from http://eclipse.org/aspectj,
October 2003.

[2] David A. Schmidt. The Structure of Typed Programming Languages. Foundations of Computing
Series. MIT Press, Cambridge, Mass., 1994.

3


