
Com S 541 — Programming Languages 1 November 6, 2003

Homework 4: Aspect-Oriented Programming and
AspectJ

Due: Thursday, November 6, 2003.
This homework should all be done individually. Its purpose is to help you explore aspect-oriented

programming and the design of AspectJ.
Don’t hesitate to contact the staff if you are not clear about what to do.
See the syllabus for readings for this homework, which include the article by Kiczales, et al. we

passed out, as well as the material on the aspectj.org website. The course web page has material
on running Java, and the AspectJ compiler is installed already on the department Linux machines.
It’s called ajc; you can also get a copy for your home machine from aspectj.org. It’s handy to
use AspectJ from the Eclipse IDE; this should also be installed already on the department Linux
machines.

1. To begin copy the directory

/home/course/cs541/public/homework/aspectjhw

to your home directory. To work with the following problems, you must have the jar files for
JUnit and AspectJ’s runtime in your CLASSPATH, as well as the directory that is just above
aspectjhw (i.e., your home directory if you copied it there directly). For example, you can
have on Linux, with the bash shell:

CLASSPATH="$HOME:/opt/junit/junit.jar:/opt/aspectj/lib/aspectjrt.jar:."
export CLASSPATH

(You can put this in your .bashrc file if you wish, but you may have other Java projects that
need other CLASSPATH settings.)

If you use tcsh or csh as your shell (again on Linux), you should instead of the above execute
something like:

setenv CLASSPATH "$HOME:/opt/junit/junit.jar:/opt/aspectj/lib/aspectjrt.jar:."

On a Windows machine, replace the colons (:) in the CLASSPATH above by semicolons (;). Also,
if you’re not using bash, set the CLASSPATH environment variable from the control panel. (If you
don’t have JUnit at home, you will need to download that first from http://www.junit.org.)

If you use Eclipse, just include the junit jar file named in the CLASSPATH above in your Java
Build Path’s Libraries path, and work in an AspectJ project. See http://www.eclipse.org/ajdt/
for more information about using Eclipse with AspectJ, and in particular, look at the post-
installation instructions.

To test that everything is working before you start, compile, with ajc, the Fibonacci.java
and FibonacciTest.java files, and run aspectjhw.FobonacciTest. If you are using the
command line on Linux, this is done as follows. First change to the directory immediately
above asjpectjhw (e.g., cd .. if you are currently in that directory), then do:

ajc aspectjhw/Fibonacci.java aspectjhw/FibonacciTest.java
java aspectjhw.FibonacciTest

If all goes well, then you should see output like the following.

1

.
Time: 0.015

OK (1 tests)

In Eclipse, you should see a green progress bar for the JUnit test if you run FibonacciTest as
a JUnit test (or the above output if you run it as an application).

If that doesn’t work, carefully review the instructions above, and make sure that everything is
installed correctly. If you’re still having trouble, see the staff for help.

2. (15 points) In this problem you will write a simple development aspect for tracing some Java
code. In AspectJ, write an aspect, aspectjhw.FibTracing, which you should put in a file
aspectjhw/FibTracing.java. Define a single named pointcut, fibpc, that matches all ex-
ecutions of methods named fib*, and two pieces of advice. The first piece of advice should
be before advice, that prints out “calling ”, the name of the called method (use methods
defined on thisJoinPoint to get the name — look in API AspectJ defines for this), “(”, and
the argument passed to the call, “)”, and a newline. You can use System.out.println to do
this. For example, your code would print “calling fib(3)” followed by a newline. The sec-
ond piece of advice should be after returning advice that prints out the result returned by
the call, “ == ”, the name of the called method (again use thisJoinPoint to get the name),
“(”, and the argument passed to the call, “)”, and a newline. For example, your code would
print “2 == fib(3)” followed by a newline.

Now compile your aspect together with Fibonacci.java and FibonacciTest.java, as follows
(on Linux).

ajc aspectjhw/FibTracing.java aspectjhw/Fibonacci.java aspectjhw/FibonacciTest.java

The tests should pass and the output should also include your tracing information, which starts
as follows:

calling fib(0)
0 == fib(0)
calling fib(1)
1 == fib(1)
calling fib(2)
calling fib(1)
1 == fib(1)
calling fib(0)
0 == fib(0)
1 == fib(2)
calling fib(3)
calling fib(2)
calling fib(1)
1 == fib(1)
calling fib(0)
0 == fib(0)
1 == fib(2)
calling fib(1)
1 == fib(1)
2 == fib(3)
calling fib(8)
...

Make a printout of your aspect and the testing output, and hand those in for this problem.

2

3. (15 points) This problem modifies the solution of the previous problem, so you need to make
a printout for the previous problem first before continuing.

In this problem, change the FibTracing.java aspect so that it prints a display that indents
matching calls and returns by the same amount, and so that a recursive call is nested one
space more than the call that originated it. Thus when you compile and run your new tracing
output with the Fibonacci test, your output should start like:

calling fib(0)
0 == fib(0)
calling fib(1)
1 == fib(1)
calling fib(2)
calling fib(1)
1 == fib(1)
calling fib(0)
0 == fib(0)
1 == fib(2)
calling fib(3)
calling fib(2)
calling fib(1)
1 == fib(1)
calling fib(0)
0 == fib(0)
1 == fib(2)
calling fib(1)
1 == fib(1)
2 == fib(3)
calling fib(8)
...

Be sure to modularize your code so that you don’t write the same thing several times.

Make a printout of your aspect and the testing output, and hand those in for this problem.

4. (15 points) Without changing the aspectjhw.FibTracing aspect you wrote in the previous
problems or any other existing code in aspectjhw.Fibonacci or aspectjhw.FibonacciTest,
write an aspect, aspectjhw.BlankLines that makes the output have a blank line after each
successive outermost call to Fibonacci.fib returns. (Hint: use cflowbelow.) That is the
output should start as follows.

calling fib(0)
0 == fib(0)

calling fib(1)
1 == fib(1)

calling fib(2)
calling fib(1)
1 == fib(1)
calling fib(0)
0 == fib(0)
1 == fib(2)

calling fib(3)
calling fib(2)

3

calling fib(1)
1 == fib(1)
calling fib(0)
0 == fib(0)
1 == fib(2)
calling fib(1)
1 == fib(1)
2 == fib(3)

calling fib(8)
...

Make a printout of your aspect and the testing output, and hand those in for this problem.

5. (15 points) Without changing the aspects you wrote in the previous problems or any other ex-
isting code, write an aspect, aspectjhw.FibTiming that prints out the number of milliseconds
taken by each top-level (outermost) call to Fibonacci.fib before the blank line printed by the
aspectjhw.BlankLines. (Hint: use around advice and Java’s System.currentTimeMillis()
method.) Your output should thus start as follows.

calling fib(0)
0 == fib(0)
Time: 10 ms

calling fib(1)
1 == fib(1)
Time: 0 ms

calling fib(2)
calling fib(1)
1 == fib(1)
calling fib(0)
0 == fib(0)
1 == fib(2)
Time: 10 ms

calling fib(3)
calling fib(2)
calling fib(1)
1 == fib(1)
calling fib(0)
0 == fib(0)
1 == fib(2)
calling fib(1)
1 == fib(1)
2 == fib(3)
Time: 0 ms

calling fib(8)
...

Of course the times you actually see will vary depending on the version of Java you use, the
operating system, the machine, etc.

Make a printout of your aspect and the testing output, and hand those in for this problem.

4

6. (15 points) Without changing the aspects you wrote in the previous problems or any other
existing code, write an aspect, aspectjhw.FibMemo that keeps a table relating arguments and
results of Fibonacci.fib, and uses these to avoid recomputation previously-computed values
for Fibonacci.fib. (Hint: use a java.util.Hashtable.)

When you test, the output should be as follows.

calling fib(0)
0 == fib(0)
Time: 20 ms

calling fib(1)
1 == fib(1)
Time: 0 ms

calling fib(2)
1 == fib(2)
Time: 0 ms

calling fib(3)
2 == fib(3)
Time: 0 ms

calling fib(8)
21 == fib(8)
Time: 0 ms

Make a printout of your aspect and the testing output, and hand those in for this problem.

7. (15 points) You may notice that the test in the above program run noticeably faster than
before. We should be able to use the memoized version to compute the Fibonacci function of
moderately-sized arguments.

Without changing the aspects you wrote in the previous problems or any other existing code,
write an aspect aspectjhw.FibLargerTest that adds another test method, testLargerArgs
to the class, aspectjhw.FibonacciTest, and with body

assertTrue(Fibonacci.fib(30) > Fibonacci.fib(20));
assertTrue(Fibonacci.fib(40) > Fibonacci.fib(30));
assertTrue(Fibonacci.fib(50) > Fibonacci.fib(40));
assertTrue(Fibonacci.fib(70) > Fibonacci.fib(50));

Make a printout of your aspect and the testing output, and hand those in for this problem.

5

