Com S 541 — Programming Languages 1 October 29, 2002

Homework 4: Concepts of Aspect-Oriented
Programming and Aspect Smalltalk

Due: Tuesday, November 12, 2002.

All but the last problem on this homework should be done individually. The purpose of these
problems is help you better understand the concepts behind aspect-oriented programming in As-
pectd.

The last problem on this homework can either be done individually or in teams. Its purpose is
to design an aspect-oriented version of Smalltalk.

Don’t hesitate to contact the staff if you are not clear about what to do.

See the syllabus for readings for this homework, which include the two articles by Kiczales, et
al. we passed out, as well as the material on the aspectj.org website. The course web page has
material on running Java, and the AspectJ compiler is installed already on the department Linux
machines. It’s called ajc; you can also get a copy for your home machine from aspectj.org.

1. (15 points) Describe, in general terms, the kinds of changes that aspects written in AspectJ
can make to a Java program. That is, what kinds of things can you do in AspectJ that you
can’t easily do in Java itself. Give the AspectJ syntax for each such change by showing a brief
example of each.

2. (20 points) An aspect written in AspectJ can be seen as a kind of edit of a program. Indeed
the compiler ajc has a switch, -preprocess, that can be used to look at the source code of
what it would normally generate in a .class file. So one could imagine that instead of using
AspectJ directly one could use editing scripts (e.g., in Perl) to edit a Java program instead of
AspectJ. Discuss the advantages of using a programming language, such as AspectJ instead of
such editing scripts. To be comprehensive, in your answer be sure to treat each of the kind of
changes you described in the previous problem.

3. (20 points) For each of the following, describe the advantages and disadvantages of simplifying
AspectJ by removing the named feature. (Another way to think of this is what is the purpose
and importance of having the feature in the language.)

Abstract pointcuts and abstract aspects.

(a)
(b)
()

)

(d) The cflow and cflowbelow joinpoints.

Around advice.

Both call and execution joinpoints.

4. (30 points) This problem concerns type checking and AspectJ’s around advice.

(a) Describe the problem of type checking around advice. (I.e., how could you get a type
error in around advice that passes the AspectJ type checker?)

(b) How could you change Aspect], e.g., by restricting some of its features, so that it would
be possible to have sound static type checking of AspectJ’s around advice? Would this
be a good idea?

The following problem can be done in a team if you wish.

5. Design, on paper, a set of changes to Smalltalk that would support aspect-oriented program-
ming. We'll call this language Aspect Smalltalk. Note that there are a couple of designs for
an aspect-oriented version of Smalltalk on the web. For purposes of this exercise, I think it is
best to ignore these, but if you look at them, be sure to credit any ideas, wording, etc. that
you use appropriately.



(a)

(b)

(40 points) Describe the goals and objectives for your design by explaining what kinds
of changes you want to support. That is, describe the kinds of changes to Smalltalk you
would like to automate and why you want to automate them.

(30 points) Give grammars that define the microsyntax (lexical grammar) and syntax of
Aspect Smalltalk. You only need to give productions that are different from those in
Smalltalk. Use the nonterminal names in the back of the Goldberg and Robson’s book
(Smalltalk-80) as your source for the Smalltalk grammar. But don’t draw railroad charts
like that yourself, instead use the usual conventions of context-free grammars (as shown
in class, for example).

(100 points) For each grammar production that you add to Smalltalk, give a description
of the semantics (meaning) of that production along with a few simple examples of its
use. These semantics can be written in clear English, although you should also use
mathematical notation whenever helpful. Make whatever technical definitions you find
helpful, but label these clearly as definitions.

(25 points, extra credit) Explain how would you go about evaluating the quality of your
language design, assuming you had sufficient time and resources.

(75 points, extra credit) If you have an interest, implement part of your langauge design
in Squeak. Give examples of how it works and hand in a printout of your source code.



