Fall, 2005 Name:

Com S .541 — Programming Languages 1
Test on Functional Languages and Haskell

Special Directions for this Test

This test has 9 questions and pages numbered 1 through 10.

This test is open book and notes.

Before you begin, please take a moment to look over the entire test so that you can budget your time.
When you write Haskell code on this test, you may use anything in the Haskell Prelude without writing it
in your test. You are encouraged to define functions not specifically asked for if they are useful to your
programming; however, if they are not in the Prelude, then you must write them into your test.



1. (5 points) What is the difference between type checking and type inference?

2. (5 points) In Haskell, write a function
> mapEach :: (a -> b) -> [[a]l] -> [[b]]

such that mapEach f xss returns a list of lists, containing the result of applying f to each element of
each sublist of xss. For example,

mapEach (+ 3) [1 = []
mapEach (+ 4) [[1] = [[]]
mapEach (+ 2) [[5, 4, 11, [7, 61, [8, 12]]
= [[7, 6, 3], [9, 8], [10,14]]
mapEach (> 3) [[1, 7], [0, 4], [9, 101, []1]
= [[False,True], [False,True], [True,Truel, [1]
mapEach (\y -> y*y) [[0, 4], [9, 10, 2, 7, 5], [1 .. 3]1]
= [[0,16], [81,100,4,49,25], [1, 4, 9]]



3. (10 points) Write a function

> strideIndexes :: Integral a => a -> [b] -> [a]

that takes a number, len, such that 1en > 0, and a list of elements, xs, and returns a list of
zero-based indexes, such the i*" element of the result is a zero-based index into xs such that i is
evenly divisible by len. (Hint: in your solution, you may want to use Haskell’s mod operator, which
has type Integral a => a -> a -> a and computes the mathematical “modulo” operation.)

Note that your code must work for both finite and infinite lists. You may assume that the len
argument is strictly greater than 0.

The following are examples.

strideIndexes 1 [1 = []

strideIndexes 2 [0, 1, 2, 3, 4] = [0, 2, 4]

strideIndexes 3 [’a’, ’b’, ’c¢’, ’d’, ’e’, ’f’, ’g’, ’h’] = [0,3,6]
take 7 (strideIndexes 1 [0 ..]) = [0,1,2,3,4,5,6]

take 9 (stridelIndexes 5 [0 ..]) = [0,5,10,15,20,25,30,35,40]
strideIndexes 5 [0 ..] = [0, 5 ..]



4. (10 points) Implement the function

> movingAverage :: Fractional a => [a] -> [a]

that takes an infinite list of numbers, xs, and returns an infinite list of the arithmetic means of each
adjacent pair of numbers in the list, in order. For example:

movingAverage [0, O ..] = [0.0, 0.0 ..]
take 5 (movingAverage [1 ..]) = [1.5, 2.5, 3.5, 4.5, 5.5]
take 5 (movingAverage [2, 4 ..]) = [3.0, 5.0, 7.0, 9.0, 11.0]
take 5 (movingAverage ([0] ++ [2, 4 ..])) = [1.0, 3.0, 5.0, 7.0, 9.0]
take 7 (movingAverage ([0, 10, -100, 1000, -10000] ++ [2, 4 ..]))
= [5.0, -45.0, 450.0, -4500.0, -4999.0, 3.0, 5.0]

Note that your function may assume that the argument, xs, is infinite.

5. (10 points) Implement the function

> movingMax :: Ord a => [a] -> [a]

that takes an infinite list of ordered values, xs, and returns an infinite list of the maximums of each
adjacent pair of values in the list, in order. For example:

movingMax [0, O ..] = [0, O ..]

movingMax [1 ..] = [2 ..]

take 5 (movingMax [2, 4 ..]) = [4, 6, 8, 10, 12]

take 5 (movingMax [0, -2 ..]) = [0, -2, -4, -6, -8]

take 7 (movingMax ([0, 10, -100, 1000, -10000] ++ [2, 4 ..]1))
= [10, 10, 1000, 1000, 2, 4, 6]

Note that your function may assume that the argument, xs, is infinite.



6. (15 points) Write a function,

> moving :: (a -> a -> a) -> [a] -> [a]

such that moving is a generalization of the previous two problems. For example, if we define

> movingAverage2 = moving (\ x y -> (x+y)/2)
> movingMax2 xs = moving max xs
> movingSum = moving (+)

then we have the following

take 5 (movingAverage2 [2, 4 ..]) = [3.0, 5.0, 7.0, 9.0, 11.0]
take 7 (movingAverage2 ([0, 10, -100, 1000, -10000] ++ [2, 4 ..]1))
= [5.0, -45.0, 450.0, -4500.0, -4999.0, 3.0, 5.0]

movingMax2 [1 ..] = [2 ..]

take 5 (movingMax2 [2, 4 ..]) = [4, 6, 8, 10, 12]

take 5 (movingMax2 [0, -2 ..]) = [0, -2, -4, -6, -8]

take 7 (movingMax2 ([0, 10, -100, 1000, -10000] ++ [2, 4 ..1))
= [10, 10, 1000, 1000, 2, 4, 6]

movingSum [0 ..] [1, 3 ..]
movingSum [2, 4 ..] = [6, 10 ..]
movingSum [1, 1 ..] [2, 2 ..]

moving (\x y -> y) [0 ..] = [1 ..]



7. (15 points) In Haskell, consider the following datatype that describes file system entities.

> data FSEntity = File Contents | Dir [(EName, FSEntity)]
> type EName = String
> type Contents = String

An FSEntry is either a file, if it has the form (File s), or a directory, if it has the form (Dir m).

Your first task is to write a function

> okFSEntity :: FSEntity -> Bool

that takes an FSEntity value, fse, and determines whether it is ok in the sense that, if fse is a
directory of the form (Dir m), then all of the following must hold:

e the list m is not empty,

the entity names, i.e., the ENames in the first components of each pair of m, are distinct strings
(i.e., none are equal to each other),

«

one of the entity names of m is the special name
directory), and

..” (which names the directory’s parent

“

e the value of the FSEntity associated with the name
whose first component is “..”) is a directory.

..7 (i-e., the second component of a pair

There are no other conditions on a file system entity being “ok”. Thus, an file is always ok. Since a
directory entity may refer to itself (the structure may be circular), it is not part of checking that an
entity is ok to check that subdirectories contained in the directory are ok (as that could lead to
infinite loops). Entity names in an ok directory may be empty and may contain arbitrary characters.

There are examples on the next page. Please write your solution in the space below.



The following are examples for the okFSEntity problem on the previous page.

(Recall that the Haskell 1et expression allows mutual recursion among the names being defined and
the values used for those names—Ilike Scheme’s letrec. Hence, in the fifth example below, root1 is

defined to be a directory that maps the name “..” to root1 itself.)
okFSEntity (File "my contents") = True
okFSEntity (File "another one") = True
okFSEntity (Dir []) = False

okFSEntity (Dir [("z", File "")]) = False

let rootl = (Dir [("..", rootl)])
in okFSEntity rootl = True

let br2 = (Dir [("..", File "")1)

in okFSEntity br2 = False
let root2 = (Dir [("..", root2)])

root3 = (Dir [("..", root2)])
in okFSEntity root3 = True

let br = (Dir [1)
root4d = (Dir [("..", br)])
in okFSEntity root4 = True

let br5 = (Dir [("..", br5), ("..", br5)])
in okFSEntity brb = False

let root6é = (Dir [("..", root6), ("home", File "junk")])
in okFSEntity root6 True

let r7 = (Dir [("..", r7), ("home", hd)])
hd = (Dir [("f1", File ""), ("..", x7), ("junk", File "nada")])
in okFSEntity hd = True

let r8 = (Dir [("..", r8), ("home", hd2)])
hd2 = (Dir [("f1", File ""), ("..", r8), ("f1", File "")])
in okFSEntity hd2 = False



8. (15 points) In this problem, we will always assume that values of type FSEntity, satisfy the predicate
okFSEntry from problem 7.

Your task in this problem is to write a function,

> fetchFromPath :: FSEntity -> Path -> Maybe FSEntity
> type Path = [EName]

that takes a file system entity, curdir, that represents the current directory, and a Path (i.e., a list of
strings), path, and returns a Maybe value; the result which either is (Just fse), if fse is found by
following path starting at curdir, or is Nothing if there is no such file system entity. You can
assume that the curdir argument is a directory (i.e., has the form Dir m), for some finite list of
pairs, m. You can also assume that the list path is non-empty.

Recall that the data type Maybe a is defined in the Haskell Prelude as follows.
data Maybe a = Nothing | Just a deriving (Eq, Ord, Read, Show)

There are examples on the next page. Please write your answer in the space below.



For purposes of giving examples of the problem on the previous page, we will make the following

definitions.

> r0 = Dir [("..", r0)]

> rootl = Dir [("..", rootl), ("home", hd)]

> hd = Dir [("f1", File ""), ("..", rootl), ("junk", File "nada"),

> ("rhe", rushome), ("gtl", gtlhome)]

> rushome = Dir [("csb41", r541), ("..", hd), (".login", File "!/bin/sh...")]
> r541 = Dir [("..", rushome), ("fib.hs", File "fibn = ...")]

> gtlhome = Dir [("csb41", gb41), ("..", hd), ("cs342", g342), ("root", rootl)]
> gb41 = Dir [("..", gtlhome), ("hwl.tex", File "Write ...")]

> g342 = Dir [("hwO.tex", File "Hand in ..."), ("..", gtlhome)]

Using the above definitions, the following are examples of the fetchFromPath function you are to
implement.

(fetchFromPath rO [".."]) = Just r0

(fetchFromPath rO ["unk"]) = Nothing

(fetchFromPath rO ["..", "unk"]) = Nothing

(fetchFromPath rO ["unk", "..", "x"]) = Nothing
(fetchFromPath rootl [".."]) = Just rootl

(fetchFromPath rootl ["home"]) = Just hd

(fetchFromPath rootl ["..", "home"]) = Just hd
(fetchFromPath rootl ["..", "home", ".."]) = Just rootl
(fetchFromPath hd ["rhe"]) = Just rushome

(fetchFromPath rootl ["home", "rhe"]) = Just rushome
(fetchFromPath hd ["..", "home", "rhe"]) = Just rushome
(fetchFromPath hd ["..", "home", "..", "home", "rhe"]) = Just rushome
(fetchFromPath rootl ["home", "gtl", "csb41"]) = Just gb4l

(fetchFromPath rootl ["home", "gtl", "csb41", "hwl.tex"]) = Just (File "Write ..

.ll)



9. (15 points) Consider the following simplified (higher-order) abstract syntax for a logic over one
Integer variable.

> data Formula =

> Pred (Integer -> Bool) -- predicates over the variable
> | Formula ‘And‘ Formula -- conjunction of formulas
> | Formula ‘Or‘ Formula -- disjunction of formulas

Notice that negation is not a kind of formula in the logic. Your task is to write a function,

> neg :: Formula -> Formula

that takes a formula, f, and returns a formula that is true just when f is false. The following are
examples.

neg (Pred odd) = Pred (not . odd)

neg (Pred (\ i -> 0 <= i && i < 10)) = Pred (\ 1 -> not (0 <= 1 && i < 10))

neg (Pred (== 3)) = Pred (/= 3)

neg (Pred (/= 3)) = Pred (== 3)
neg ((Pred (== 3)) ‘Or¢ (Pred (== 4))) = (Pred (/= 3)) ‘And‘ (Pred (/= 4))
neg ((Pred (>= 3)) ‘And‘ (Pred (<= 10))) = (Pred (< 3)) ‘Or‘ (Pred (> 10))

neg (((Pred (< 2)) ‘And‘ (Pred (> -5))) ‘Or¢ ((Pred (>= 3)) ‘And‘ (Pred (<= 10))))
= (((Pred (>= 2)) ‘Or¢ (Pred (<= -5))) ‘And‘ ((Pred (< 3)) ‘Or¢ (Pred (> 10))))

10



