Fall, 2004 Name:

Com S 541 — Programming Languages 1

Test on Aspect-Oriented Languages and Aspect.)

This test has 10 questions and pages numbered 1 through 13.

Special Directions for this Test

This test is open book and notes.

If you need more space, use the back of a page. Note when you do that on the front.

This exam is timed. We will not grade your exam if you try to take more than the time allowed. Therefore,
before you begin, please take a moment to look over the entire exam so that you can budget your time.
Clarity is important; if your diagrams or programs are sloppy and hard to read, you will lose points.
Correct syntax also makes a difference for programming questions.

When you write AspectJ code on this test, you may use anything in the Java standard libraries, or in the
packages org.aspectj.lang or org.aspectj.lang.reflect without writing it in your test. You are
encouraged to define classes, interfaces, fields, and methods not specifically asked for if they are useful to
your programming; if they are not in the standard libraries or the packages named above, please write
them into your test.

Base Program

In the first several problems we will use the following code as a base program. The base program contains
two packages. The first package is geom, which consists of three classes: Point, ColoredPoint, and Line

package geom;

/** Two-dimensional, cartesian points.
*/
public class Point {
/** The x coordinate. */
private int x = 0;
/*x The y coordinate. */
private int y = 0;

/** Initialize this point to the origin. */
public Point() { }

/** Initialize this point to the given coordinates. */
public Point(int xc, int yc) {

X = XC;

y = ye;
}

/** Return this point’s x coordinate. */
public /*@ pure @x/ int getX() {
return Xx;

3

/** Return this point’s y coordinate. */
public /*@ pure @*/ int getY() {
return y;

3

/** Move this point’s x coordinate by the given amount. */
public void moveX(int dx) {
X += dx;

}

/** Move this point’s y coordinate by the given amount. */
public void moveY(int dy) {

y +=dy;
X

public boolean equals(Object o) {
Point p = (Point) o;
return p.x == x && p.y == y;

public int hashCode() {
return x + y;

}

package geom;
import java.awt.Color;

/** Colored Points. */
public class ColoredPoint extends Point {

/** This point’s color attribute. */
private Color c;

/** Initialize this ColoredPoint. */
public ColoredPoint() {

c = Color.BLACK;
}

/** Initialize this colored point. */

public ColoredPoint(int xc, int yc, Color c) {
super (xc, yc);
this.c = c;

}

/**Returns the color of this point. */
public Color getColor() {
return c;

3

/** Set the color of this point to the argument. */
public void setC(Color c) {
this.c = c;

3

package geom;

/** Lines in 2-dimensional space.
*/

public class Line {

/** The starting point. */
private Point start;

/** The ending point. */
private Point end;

/** Initialize this line to go from the given
* start to the given end point. */
public Line(Point start, Point end) {
this.start = start;
this.end = end;

3

/** Return the end point of this line. */
public Point getEnd() {

return end;
}
/** Return the starting point of this line. */
public Point getStart() {

return start;
}
public boolean equals(Object o) {

Line 1n = (Line) o;

return ln.start.equals(start)

&& 1n.end.equals(end);

}

public int hashCode() {
return start.hashCode() + end.hashCode();
}

The second package is another, which has two classes that are designed for testing purposes and don’t
have any practical use.

package another;

/** For testing the equals method advice. */
public class MyType {

/** Always return true. */
public boolean equals(Object o) {
return true;

3

public int hashcode() { return 0; }

package another;

/** For testing the equals method. */
public class SubType extends MyType {
}

1. (10 points) In AspectJ, without changing the base program’s code (see the previous pages), write an
aspect answers.LineConstructorPre that checks that both arguments to the constructor of
geom.Line are not null, and throws a java.lang.AssertionError exception otherwise.

For example, with the required aspect, each of the following new object construction expressions
would throw this exception when executed.

new Line(null, new Point());
new Line(new Point(), null);
new Line(null, null);

However, the expression new Line(new Point(), new Point(5,41)) would terminate normally.

2. (15 points) Without changing the base program code or any aspects written previously, write an
aspect, answers.EqualsNullEnforcer. This aspect is to automate the otherwise tedious job of
writing code to check that, whenever the method equals(Object) is executed with an argument of
null, it returns false.

For example, when compiled together with your aspect, the following expressions should all return
false:

new Point(3,4).equals(null));

new Point().equals(null));

new ColoredPoint().equals(null));

new Line(new Point(), new Point(5, 4)).equals(null));
new MyType().equals(null));

However, the behavior of the equals method on other arguments should not be changed by your
aspect. Your aspect should work for all types, not just the base program types given above.

3. (15 points) Without changing the base program or other aspects, write an aspect,
answers.EqualsEqOptimizer that automates the otherwise tedious job of writing code to check that,
whenever the method equals(Object) is called with an argument that is the same as (i.e., is == to)
the receiver, it should return true.

For example, when compiled together with your aspect, the following JUnit test code should pass but
not actually call the equals methods:

Point p = new Point();
assertTrue(p.equals(p));

Line 1n = new Line(new Point(), new Point(5, 4));
assertTrue(1ln.equals(ln));

However, the behavior of the equals method on other arguments should not be changed by your
aspect. Your aspect should also work for all types, not just Point and Line.

4. (5 points) Without changing the base program, write an aspect answers.Glue to make each type in
the package geom be a subtype of the following interface, contracts.EqualsSameTypeOnly.

package contracts;

/** This interface marks classes for which

* equals should return true only when the argument’s
* dynamic type is the same as the receiver’s class.
*/

public interface EqualsSameTypeOnly {3}

(This interface will also be used in the following problem.)

10

5. (15 points) In this problem, you will write an aspect, answers.EqualsSameTypeOptimizer. The
advice you are to write should automate the otherwise tedious job of writing code to check that,
whenever the method equals(0bject) of some type T is called with an argument of of dynamic type
S, where S # T, it returns false. (Hint: in Java, the expression o.getClass() returns the dynamic
type of o as an object of type java.lang.Class. You can use == to compare these singleton class
objects.) However, the advice you write should only apply to types that are subtypes of the type,
contracts.EqualsSameTypeOnly.

For example, suppose that ColoredPoint is a subclass of Point. Then when it and the rest of the
base program are compiled together with your aspect, the following expressions should all return
false:

new geom.Point().equals(new geom.ColoredPoint());

new geom.Point().equals(new geom.Line(new geom.Point(), new geom.Point(5, 4)));

new geom.Line(new geom.Point(), new geom.Point(5, 4)).equals(new geom.Point());
However, the behavior of the equals method on other arguments should not be changed by your
aspect. Furthermore, since the types in the package another do not implement
contracts.EqualsSameTypeOnly, the expression

new another.MyType() .equals(new another.SubType())

would still return true.

11

6. (5 points) In Java, one cannot call the getClass () method on null. So there is a potential problem
when combining the advice in answers.EqualsSameTypeOptimizer (in the previous problem) and
answers.EqualsNullEnforcer (in problem 2), since the check for null must be done before the check
for the same type. Without changing the code of the base program or any aspects, write an aspect
answers.Fix0Order that ensures that the advice in answers.EqualsNullEnforcer executes before

the advice in answers.EqualsSameTypeOptimizer.

7. Suppose we added around advice to Haskell.

(a) (5 points) Describe one use for around advice in AspectJ that that would still work well in
Haskell. Explain briefly or give a short example.

(b) (5 points) Describe one use for around advice in AspectJ that would not work well in Haskell.
Explain briefly or give a short example.

12

8. The the new version of Java, 1.5, like C#, has an attributes feature. Attributes allow one to statically
add user-defined modifiers to declarations of fields, methods, and classes. For example, one might
designate a method as an @atomic method for purposes of concurrency control, state that a method
was @pure in the sense that it should have no side-effects, or state that a method was a @test
method, to be used by a testing tool. In Java, these attributes can be processed by various tools, and
can be queried at run-time (using Java’s reflection mechanism).

(a) (5 points) Would it be useful to extend AspectJ’s declare syntax for static introductions to
allow one to add attributes to existing code? That is, for the new version of Java, would it be
useful to add to AspectJ the following syntax?

AspectMemberDecl ::= declare attributes : Pattern : AttributeList ;
Pattern ::= FieldPattern | MethodPattern | ConstructorPattern | TypePattern

Explain briefly.

(b) (5 points) Would it be useful to extend Aspect]’s ModifersPattern syntax to match attributes?
(The current ModifersPattern syntax is used for matching modifiers in other patterns.) Explain
briefly.

13

9. (5 points) What expressive power would AspectJ lose if the “this” pointcut description were
eliminated from the language?

10. (10 points) This is a question about AspectJ’s type system. Recall that Java ensures that each type
of checked exception that may be thrown by an expression (or statement) in a method is either
handled with a surrounding try-catch statement, or is a subtype of an exception type declared in
the method’s header.

Consider before advice of the form:

before() throws EOFException
calls(void foo() throws FileNotFoundException) {
throw new EOFException();

}

In Java EOFException and FileNotFoundException are both checked exceptions, but neither is a
subtype of the other. Let us assume that there is only one method foo() in the program, and that
it’s header is

public void foo() throws FileNotFoundException

(and thus it may only throw exceptions of type FileNotFoundException (or a subtype) when called.

Ignoring what AspectJ actually does with this advice, should this be considered type correct or a
type error? Explain.

