
1

Fall, 2003 Name:

Com S 541 — Programming Languages 1

Test on OO Type Systems, Aspect-Oriented Languages,
and AspectJ

This test has 10 questions and pages numbered 1 through 12.

Special Directions for this Test

This test is open book and notes.
If you need more space, use the back of a page. Note when you do that on the front.
This exam is timed. We will not grade your exam if you try to take more than the time allowed. Therefore,
before you begin, please take a moment to look over the entire exam so that you can budget your time.
Clarity is important; if your diagrams or programs are sloppy and hard to read, you will lose points.
Correct syntax also makes a difference for programming questions.
When you write AspectJ code on this test, you may use anything in the Java standard libraries, or in the
packages org.aspectj.lang or org.aspectj.lang.reflect without writing it in your test. You are
encouraged to define classes, interfaces, fields, and methods not specifically asked for if they are useful to
your programming; if they are not in the standard libraries or the packages named above, please write
them into your test.

Base Program

In the first several problems we will use the following code as a base program. The base program contains
an interface, Term, and three classes that implement it: Variable, Application, and Lambda.

package exam;
import java.util.Set;
/** Terms in the lambda calculus. */
public interface Term {

/** Reduce one step. */
//@ ensures \result != null;
Term reduce1Step();

/** Return the set of all Strings that name
* free variables referenced in this term. */

//@ ensures \result != null;
Set freeVars();

/** Substitute arg for all free occurrences of var. */
//@ requires var != null && arg != null;
//@ ensures \result != null;
Term substituteFor(String var, Term arg);

}



2

package exam;
import java.util.*;
/** Variable reference terms. */
public class Variable implements Term {

/** The name of this Variable */
protected final /*@ non_null @*/ String name;

/** Initialize this Variable to have the given name. */
//@ requires name != null;
public Variable(String name) {

this.name = name;
}

public Term reduce1Step() {
return this;

}

public Set freeVars() {
Set s = new HashSet();
s.add(this.name);
return s;

}

public Term substituteFor(String var, Term arg) {
if (name.equals(var)) {

return arg;
} else {

return this;
}

}
public String toString() { return name; }

public boolean equals(Object o) {
return (o instanceof Variable) && name.equals( ((Variable)o).name );

}

public int hashCode() { return name.hashCode(); }
}



3

package exam;
import java.util.*;
/** Application terms. */
public class Application implements Term {

/** The operator and operand expressions. */
protected final Term[] exps; //@ private invariant \nonnullelements(exps);

/** Initialize this to be an application of e0 to e1. */
//@ requires e0 != null && e1 != null;
public Application(Term e0, Term e1) {

exps = new Term[] { e0, e1 };
}

public Term reduce1Step() {
Term oper = exps[0].reduce1Step();
if (oper != exps[0]) {

return new Application(oper, exps[1]);
} else if (oper instanceof Lambda) {

return ((Lambda) oper).apply(exps[1]);
} else {

return this;
}

}

public Set freeVars() {
Set s = new HashSet();
for (int i = 0; i < 2; i++) {

s.addAll(exps[i].freeVars());
}
return s;

}

public Term substituteFor(String var, Term arg) {
Term substituted[] = new Term[2];
for (int i = 0; i < 2; i++) {

substituted[i] = exps[i].substituteFor(var, arg);
}
return new Application(substituted[0], substituted[1]);

}

public String toString() { return "(" + exps[0].toString() + " " + exps[1].toString() + ")"; }

public boolean equals(Object o) {
return (o instanceof Application) && exps[0].equals(((Application) o).exps[0])

&& exps[1].equals(((Application) o).exps[1]);
}

public int hashCode() { return exps[0].hashCode() + exps[1].hashCode(); }
}



4

package exam;
import java.util.*;
/** Lambda (i.e., function) terms. */
public class Lambda implements Term {

/** The bound variable. */
protected final /*@ non_null @*/ String var;
/** The body. */
protected final /*@ non_null @*/ Term body;

/** Initialize this to have variable v and body b. */
//@ requires v != null && b != null;
public Lambda(String v, Term b) {

var = v;
body = b;

}

public Term reduce1Step() {
return this;

}

public Set freeVars() {
Set s = new HashSet();
s.addAll(body.freeVars());
s.remove(var);
return s;

}

public Term apply(Term arg) {
return body.substituteFor(var, arg);

}

public Term substituteFor(String var2, Term arg) {
if (var2.equals(var)) {

return this;
} else if (arg.freeVars().contains(var)) {

throw new SubstitutionException();
} else {

Term newBody = body.substituteFor(var2, arg);
return new Lambda(var, newBody);

}
}

/** Exception class used in substituteFor */
public class SubstitutionException extends RuntimeException { }

public String toString() { return "(\\ " + var + " -> " + body.toString() + ")"; }

public boolean equals(Object o) {
return (o instanceof Lambda) && var.equals(((Lambda) o).var)

&& body.equals(((Lambda) o).body);
}

public int hashCode() { return var.hashCode() + body.hashCode(); }
}



5

1. (15 points) In AspectJ, without changing Term or its subtypes (see the previous pages), write an
aspect TraceBeta that prints information about each β-reduction step that results from a call to
Application’s reduce1Step method. This information must be printed to System.out, in a line of
the form “Reducing e --> e′”, where e is the application being reduced, and e′ is the resulting term.
(Hint: Note that all terms support a toString() method that can produce the required output. The
type of System.out supports both a print and a println method; the print method does not put a
new line on the output, while the println method does.)

For example, with the required aspect, the following program

package exam;
public class ExerciseBeta {

public static void main(String[] args) {
Term t =

new Application(
new Lambda("x", new Variable("x")),
new Variable("y"));

Term s = t.reduce1Step();
System.out.println(s.toString());
t = new Application(

new Application(
new Lambda(

"x",
new Application(new Variable("x"), new Variable("x"))),

new Lambda("z", new Variable("z"))),
new Variable("q"));

s = t.reduce1Step();
s = s.reduce1Step();
s = s.reduce1Step();
System.out.println(s.toString());

}
}

would produce the following output.

Reducing ((\ x -> x) y) --> y
y
Reducing ((\ x -> (x x)) (\ z -> z)) --> ((\ z -> z) (\ z -> z))
Reducing ((\ z -> z) (\ z -> z)) --> (\ z -> z)
Reducing ((\ z -> z) q) --> q
q

Your task is to write an aspect that would produce output like the above in general.

There is space for your answer on the next page.



6



7

2. (10 points) Answer the question in whichever one of the following two paragraphs applies to you.

If you solved the previous problem using around advice, can you also solve it using only before and
after returning advice? If so do that; if not, describe why it can’t be done.

If you solved the previous problem using only before and after returning advice, can you also
solve it using only around advice? If so do that; if not, describe why it can’t be done.



8

3. (15 points) Without changing the code for Term or its subtypes, write an aspect, BigStep that
introduces a method evaluate() into the interface Term and its three subtypes, Variable,
Application, and Lambda. Like the method reduce1Step(), the evaluate method takes no
arguments and returns a Term. However, unlike reduce1Step, the result returned should be in
β-normal form; that is, if the result of t.evaluate() is n, then n.reduce1Step() should return a
term that equals n. (Hint: don’t forget that this is a problem about introduction, not about advice.)

A solution should pass the tests in the JUnit test class BigStepTest shown below. In the JUnit test,
assertEquals compares its two arguments using the equals method.

package exam;
import junit.framework.TestCase;
public class BigStepTest extends TestCase {

public BigStepTest(String name) { super(name); }
public static void main(String[] args) {

junit.textui.TestRunner.run(BigStepTest.class);
}
public void testEvaluate() {

assertEquals(new Variable("x"), new Variable("x").evaluate());
assertEquals(

new Application(new Variable("x"), new Variable("x")),
new Application(new Variable("x"), new Variable("x")).evaluate());

assertEquals(
new Lambda("x", new Variable("x")), new Lambda("x", new Variable("x")).evaluate());

assertEquals(
new Variable("z"),
new Application(new Lambda("x", new Variable("x")),

new Variable("z")).evaluate());
assertEquals(

new Variable("z"),
new Application(

new Application(
new Lambda("x", new Variable("x")),
new Lambda("x", new Variable("x"))),

new Variable("z"))
.evaluate());

assertEquals(
new Variable("z"),
new Application(

new Application(
new Lambda("x", new Variable("x")),
new Application(

new Lambda("x", new Variable("x")),
new Lambda("x", new Variable("x")))),

new Application(
new Application(

new Lambda("x", new Variable("x")),
new Lambda("x", new Variable("x"))),

new Variable("z")))
.evaluate());

}
}

There is space for your answer on the next page.



9



10

4. (5 points) Suppose that you wanted to modify the behavior of the reduce1Step() method for
Lambda terms so that, instead of simply returning the original term, it checked to see if the η rule of
the λ-calculus applied, and did an η-reduction if so. If you wanted to do this without using
introductions and without changing the code of Lambda, then what kind of advice would you need to
use to do that? (Don’t write the advice, just say what kind of advice you would need and briefly
explain why you must use that kind of advice as opposed to other kinds of advice. For example,
after throwing is one kind of advice, and before is another kind of advice.)

5. (10 points) Does it make sense to use both the target and this pointcuts in conjunction with an
execution pointcut? That is, does a pointcut of the form

execution(* f()) && target(x) && this(y)

make sense? Briefly explain your answer.

6. (10 points) Can one use AspectJ to enforce the following programming rule?

Code in package b may not call code in package a?

If so, show how this would be done in AspectJ; if not, then explain why this is impossible.



11

7. (5 points) What pointcuts in AspectJ can “bind” formals declared in advice or a pointcut declaration?

8. Suppose AspectJ were extended with a primitive pointcut arrayfetch, that takes a field pattern as
an argument. For example, the pointcut

arrayfetch(Term[ ] Application.exps)

describes the joinpoints in the class Application which occur when the array exps, of type Term[],
has elements fetched from it. To simplify the discussion below, let us suppose that, in general, this
pointcut has the form arrayfetch(JT[ ] TP.IP), where JT is a Java type (the type of the array’s
elements), TP is a type pattern that describes the types where the field is to be found, and IP is an
identifier pattern that describes the names of the array fields that are being observed.

(a) (5 points) If a joinpoint of the form arrayfetch(JT[ ] TP.IP) is used in around advice, what
type constraints should there be on the return type of a proceed() expression in the body of
the around advice?

(b) (5 points) If a joinpoint of the form arrayfetch(JT[ ] TP.IP) is used in after returning
advice, what type constraints should there be on the return type of a formal parameter that is
declared for the return value in such advice?



12

9. (10 points) Give an example of “obliviousness” in Smalltalk.

10. (10 points) If you were to give a type system to Smalltalk, would you use a structural or a by-name
type system? Explain the advantages of your choice.


