
1

Fall, 2002 Name:

Com S 541 — Programming Languages 1

Test on the OO Languages, Smalltalk, and Java

Special Directions for this Test

This test has 4 questions and pages numbered 1 through 6.
This test is open book and notes.
Before you begin, please take a moment to look over the entire test so that you can budget your time.
When you write Smalltalk code on this test, you may use anything in Squeak without writing it in your
test; however, please tell us about anything you use that might be a bit obscure. You are encouraged to
define methods and classes not specifically asked for if they are useful to your programming; if they are not
in Squeak, write them into your test.
For Smalltalk code, please use the shortened form used in Goldberg and Robson’s book when writing a
class and its methods. The following is an example.

class name: Counter
superclass: Object
instance variable names: value

"class methods"
new
^super new initialize

"instance methods"
initialize
value := 0

increment
"Increment the value of this counter by 1"
value := value + 1

value
"Return the value of this counter"
^value

As a reminder of the specification notation, the following is the specification of the type Counter given
above.

new self: Counter class → c: Counter
Ensures: c is freshly allocated and the value of c is 0.

initialize self: Counter
Modifiable: the value of self.
Effect: make the value of post(self) be 0.

increment self: Counter
Modifiable: the value of self.
Effect: make the value of post(self) be the value of pre(self) + 1.

value self: Counter → i: Integer
Ensures: i is the value of self.

2

1. Consider the specification of the class MGauge below. Assume that MGauge is a subclass of the class
Counter defined on the first page of this test.

new self: MGauge class → mg: MGauge
Ensures: obj(mg) is freshly allocated and the value of post(mg) is -1.

initialize self: MGauge
Modifiable: the value of self.
Effect: make the value of post(self) be -1.

increment self: MGauge
Modifiable: the value of self.
Effect: make the value of post(self) be the value of pre(self) + 2.

value self: Counter → i: Integer
Ensures: i is the value of post(self).

(a) (10 points) Implement the specification of MGauge by writing a subclass of Counter in Smalltalk
below. Write the minimal amount of code; that is, don’t write out code for methods that
MGauge can inherit from Counter.

class name: MGauge
superclass: Counter
instance variable names: __________________

"class methods"

"instance methods"

(b) (5 points) Is MGauge a subtype of Counter? Why or why not?

(c) (10 points) Is MGauge a behavioral subtype of Counter? Why or why not?

3

2. (50 points) In this problem you will implement a class POSet as a subclass of Set. The name POSet
stands for “partially ordered set.” That is, a POSet is a set of elements, where the elements are
related by some partial ordering. A partial ordering is reflexive, transitive, and antisymmetric. In
this problem, we will assume that <= is a partial ordering, and that < is also defined such that x < y
is the same as x <= y and x ~= y.

For example, the usual <= operation on the integers is a partial ordering, and thus both 3 <= 3 and
3 < 4 are true.

Note however, that in a partial ordering it is possible that x and y are such neither x <= y nor y <= x
holds. For example, in this problem you will make <= also be the subset ordering on POSets; that is,
for POSets, s and s′, s <= s′ if and only if for each element e ∈ s, e ∈ s′. Note that the POSets {5}
and {6} are incomparable, as neither is a subset of the other.

The class POSet is specified as follows.

new self: POSet class → ps: POSet
Ensures: obj(ps) is a freshly allocated and post(ps) is empty.

<= self: POSet, aPOSet: POSet → b: Boolean
Ensures: b is true just when each element in self is included in aPOSet.

< self: POSet, aPOSet: POSet → b: Boolean
Ensures: b is true just when each element in self is included in aPOSet and self and aPOSet

are not equal.
hasElementSmallerThan: self: POSet, anElement: Object → b: Boolean

Ensures: b is true just when there is some element in self that is strictly smaller than
anElement.

smallestElements self: POSet → r: POSet
Ensures: r contains all the elements of self such that there are no other elements in self that

are strictly smaller. Furthermore, r contains no elements that are not in self.
glbIfEmpty:IfMoreThanOne: self: POSet, emptyBlock: Block, ambigBlock: Block → e: Object

Ensures: If self has a unique smallest element, then e is the smallest element of self. If there
are no elements in self, then run emptyBlock with no arguments, and return its value.
Otherwise, if there is more than one element in self, none of which is smaller than the
others, run ambigBlock with no arguments, and return its value.

As examples consider the following.

| s1 s2 s3 |
s1 := POSet new.
s1 add: 5; add: 4; add: 1.
s2 := POSet new.
s2 add: 6; add: 4; add: 1.
s3 := POSet new.
s3 add: s1; add: s2.

"After evaluating up to this point’s"
"Expression ..." "==> it’s result"
POSet new < s1. "==> true"
POSet new < s2. "==> true"
s2 < s1. "==> false"
s1 < s2. "==> false"
POSet new <= s1. "==> true"
s1 <= s1. "==> true"

POSet new hasElementSmallerThan: 99. "==> false"
s1 hasElementSmallerThan: 1. "==> false"

4

s1 hasElementSmallerThan: 2. "==> true"
s2 hasElementSmallerThan: 1. "==> false"
s2 hasElementSmallerThan: 2. "==> true"
s3 hasElementSmallerThan: s1. "==> false"

POSet new smallestElements. "==> a POSet()"
s1 smallestElements. "==> a POSet(1)"
s2 smallestElements. "==> a POSet(1)"
s3 smallestElements. "==> a POSet(a POSet(6 1 4) a POSet(1 4 5))"

POSet new glbIfEmpty: [-1] ifMoreThanOne: [-2]. "==> -1"
s1 glbIfEmpty: [false] ifMoreThanOne: [true]. "==> 1"
s2 glbIfEmpty: [’em’] ifMoreThanOne: [’mo’]. "==> 1"
s3 glbIfEmpty: [#wrong] ifMoreThanOne: [#right]. "==> #right"

Your task is to implement the above specification, so that it works on the above examples, in a class
POSetthat is a subclass of Set. You must use inheritance to do this.

There is space also on the next page for more of your answer. Leave parts blank if nothing should be
written there. You will only get the maximum amount of points if you don’t write in methods and
instance variables that can be inherited.

class name: POSet
superclass: Set
instance variable names: __________________

"class methods"

"instance methods"

5

6

3. (5 points) What is the main advantage that Tuple Smalltalk has over Smalltalk?

4. The following question concerns methods in Java. (You are supposed to know what the terms used in
these questions mean.)

(a) (5 points) In Java, what is the difference between overriding a method and static overloading?
Give an example.

(b) (10 points) How does the distinction between overriding and overloading contribute to type
safety in Java?

(c) (5 points) Why is it that Java is considered to be a type safe language, and yet it is possible to
get a class cast exception at runtime?

