
1

Spring, 1999 Name:

My Section Letter: My Section Day and Time :

Com S 342 | Principles of Programming Languages

Test on EOPL Sections 5.6{5.7 and 6.1{6.3

This test has 6 questions and pages numbered 1 through 8.

Special Instructions for this Test

Diagrams should be drawn as we discussed in class. If your diagrams do not follow the conventions

used in class, or if they are sloppy or hard to read, you will lose points.

Reminders

For this test, you can use one (1) page (8.5 by 11 inches, one (1) side, no less than 9pt font) of

notes. Handwriting is okay. No photo-reduction is permitted. Don't use anything with printing on

the other side, please. These notes are to be handed in at the end of the test. Have your name in

the top right corner. Use of other notes or failure to follow these instructions will be considered

cheating.

During the test, if you need more space for an answer, use the back of a page. Note when you

do that on the front.

This test is timed. We will not grade your test if you try to take more than the time allowed.

Therefore, before you begin, please take a moment to look over the entire test so that you can

budget your time.

For programs, indentation is important to us for \clarity" points; if your code is sloppy or hard

to read, you will lose points. Correct syntax also matters. Check your code over for syntax errors.

You will lose points if your code has syntax errors.



2

1. (10 points) Consider the following expression in the de�ned language.

letrecproc

helper(ls, acc) = if null(ls) then acc

else helper(cdr(ls), addToEnd(add1(car(ls)), acc));

add1all(ls) = helper(ls, emptylist)

in add1all(mylist)

Write, in the de�ned language's concrete syntax, an equivalent desugared form of the above

expression, which does not use letrecproc or letrec. (You may use let in your answer.)

2. (5 points) In the Unix shell, the environment maps names to strings. Commands written in

the Unix shell can associate strings with names in the environment. When a command P

calls another command C, the environment that is active at the time of the call is used as the

starting environment for C, but when C returns, P 's environment is una�ected by whatever

changes C may have made.

What is the scope rule used in the Unix shell?



3

3. (15 points) This is a question about dynamic scoping. Consider the following expression in

the de�ned langauge (using call-by-value and the indirect array model).

let x = 3;

y = 5

in let p = proc(i, k)

begin

x := x + 1;

%% draw the picture at this point of the execution

list(x, y, i, k)

end;

x = 7

in let x = 9

in let ls = p(let y = 11 in y, x)

in cons(x, cons(y, ls))

Using dynamic scoping, (a) draw a picture of the run-time stack when execution reaches the

point indicated (with the stack growing down the page), and (b) give the result (if any) of

the above expression. If the expression has no result, or encounters an error, write that and

briey explain what the problem is.



4

4. (10 points) This is a question about dynamic assignment. Using call-by-value and the indirect

array model, what is the value of the following expression?

let size = 9;

color = 440000;

weight = 120;

ls = emptylist

in let f = proc(x)

begin

ls := list(size, color, weight);

color := 3300

end

in begin

color := 22 during f(weight);

cons (color, ls)

end



5

5. (15 points) Assuming static scoping and the direct array model, consider the following session

with the de�ned language interpreter's read-eval-print loop

--> definearray a[2];

--> begin a[0] := 342; a[1] := 541 end;

--> define i = 100;

--> define f = proc(x,b) begin x := +(9,i); a[0] := i; b[1] := b[0] end;

--> f(i, a);

Fill in the following table with the �nal values of i, a[0], and a[1] after running whole of

the the above session, in each of the given parameter mechanisms. (If need be, use \?" to

represent an unde�ned (i.e., unspeci�ed) value.)

ending value of

calling mechanism i a[0] a[1]

call-by-value

call-by-reference

call-by-value-result



6

6. This is a problem about parameter passing mechanisms and array models. Throughout this

problem use static scoping. Consider the following expression.

letarray a[2]; b[2]

in begin

a[0] := 10; a[1] := 50; b[0] := 100; b[1] := 500;

let add = proc(r, temp, u, v, index, acc)

begin

acc := 0;

temp := v;

temp[index] := +(temp[index], u[index]);

acc := +(acc, temp[index]);

index := +(index, 1);

temp[index] := +(temp[index], u[index]);

acc := +(acc, temp[index]);

r := temp;

%%% draw a picture at this point of the execution

acc

end

in let r = add(a, b, a, b, 0, b[1])

in

list(a[0], a[1], b[0], b[1], r)

end

For each of the following combinations of parameter passing mechanism and array model: (i)

draw a picture of the execution (as discussed in class) for the point noted by the comment,

and (ii) give the result of the expression. The combinations you are to do are as follows (there

are more on the following pages).

(a) (15 points) Call-by-value with the indirect model.



7

Here is another copy of the expression, for your convenience.

letarray a[2]; b[2]

in begin

a[0] := 10; a[1] := 50; b[0] := 100; b[1] := 500;

let add = proc(r, temp, u, v, index, acc)

begin

acc := 0;

temp := v;

temp[index] := +(temp[index], u[index]);

acc := +(acc, temp[index]);

index := +(index, 1);

temp[index] := +(temp[index], u[index]);

acc := +(acc, temp[index]);

r := temp;

%%% draw a picture at this point of the execution

acc

end

in let r = add(a, b, a, b, 0, b[1])

in

list(a[0], a[1], b[0], b[1], r)

end

(b) (15 points) Call-by-reference with the direct model.



8

Here is another copy of the expression, for your convenience.

letarray a[2]; b[2]

in begin

a[0] := 10; a[1] := 50; b[0] := 100; b[1] := 500;

let add = proc(r, temp, u, v, index, acc)

begin

acc := 0;

temp := v;

temp[index] := +(temp[index], u[index]);

acc := +(acc, temp[index]);

index := +(index, 1);

temp[index] := +(temp[index], u[index]);

acc := +(acc, temp[index]);

r := temp;

%%% draw a picture at this point of the execution

acc

end

in let r = add(a, b, a, b, 0, b[1])

in

list(a[0], a[1], b[0], b[1], r)

end

(c) (15 points) Call-by-value-result with the indirect model. Don't show in your picture the

copying back of the results; copy results back left-to-right.


