
1

Com S 342 Name:
Spring 2005 TA (or Section):

Principles of Programming Languages

Exam 4 on Assignment, Parameters, Statements, and
OO Features

This test has 5 questions and pages numbered 1 through 9.

Reminders

For this test, you can use one (1) page (8.5 by 11 inches, one (1) side, no less than 9pt font) of
notes. Handwriting is okay. No photo-reduction is permitted. Don’t use anything with printing on
the other side, please. These notes are to be handed in at the end of the test. Have your name in
the top right corner. Use of other notes or failure to follow these instructions will be considered
cheating.

If you need more space, use the back of a page. Note when you do that on the front.
This test is timed. We will not grade your test if you try to take more than the time allowed.

Therefore, before you begin, please take a moment to look over the entire test so that you can
budget your time.

For programs, indentation is important to us for “clarity” points; if your code is sloppy or hard
to read, you will lose points. Correct syntax also matters. Check your code over for syntax errors.
You will lose points if your code has syntax errors.

You can use helping procedures whenever you like.

For Grading:

Problem Points Score
1 5
2 10
3 40
4 20
5 25



2

1. (5 points) What is the difference between statements and expressions? Give a brief
explanation.

2. Consider the following defined language expression.

letrec ohno(x) = (ohno x) % loop forever
in let test = proc(a,b,c) if a then a+b else 0

true = 1
in (test true 342 (ohno 227))

(a) (5 points) Suppose in interpreter A, the above expression returns 343. Is the parameter
passing mechanism in this interpreter lazy or eager? (Please write either “lazy” or
“eager” for your answer.)

(b) (5 points) Suppose in interpreter B, the above expression loops forever. Is the
parameter passing mechanism in this interpreter lazy or eager? (Please write either
“lazy” or “eager” for your answer.)



3

3. This is a problem about parameter passing mechanisms. Consider the following code in the
defined language with static scoping, assignment, and lists.

let i = 1
k = 5

in let g = proc (x, y, z)
begin
set x = +(y, z);
set y = *(3, +(i,k));
list(i, k, x, y, z)

end
in let res = (g i k +(i, 9))

in cons(i, cons(k, res))

(a) (10 points) What is the result of the above program if call-by-value is used as the
parameter passing mechanism?

(b) (10 points) What is the result of the above program if call-by-reference is used as the
parameter passing mechanism?

(c) (10 points) What is the result of the above program if call-by-value-result is used as
the parameter passing mechanism? (Use left-to-right ordering if necessary.)

(d) (10 points) What is the result of the above program if call-by-name is used as the
parameter passing mechanism?



4

4. This is a problem about the object-oriented version of the defined language.

(a) (15 points) What is the result of the following code?

class counter extends object
field count
method initialize() send self setCount(1)
method setCount(i) set count = i
method bump() send self setCount(add1(send self getCount()))
method getCount() count
method actionPerformed() send self bump()

class squareCounter extends counter
method initialize() super initialize()
method setCount(i) set count = *(i,i)

class publisher extends object
field subscribers
method initialize () set subscribers = list()
method addSubscriber(o) set subscribers = cons(o, subscribers)
method notify(subs)

if null?(subs)
then 1
else begin send car(subs) actionPerformed();

send self notify(cdr(subs))
end

method publish() begin send self notify(subscribers); 1 end

let ctr = new counter()
sqCtr = new squareCounter()
pub = new publisher()
res = list()

in begin
send pub addSubscriber(ctr);
send pub addSubscriber(sqCtr);
send pub publish();
set res = list(send ctr getCount(), send sqCtr getCount());
send pub publish();
cons(send ctr getCount(), cons(send sqCtr getCount(), res))

end



5

(b) (5 points) Consider the following program, where class squareCounter is as above.

% include classes counter and squareCounter here, as above
class doubleSquareCounter extends squareCounter

method bump() begin send self bump(); send self bump() end

let dsc = new doubleSquareCounter()
in begin send dsc bump(); send dsc getCount() end

Briefly describe what happens when the above program is run.

The following just contains reference material for problems on later pages.

Types of helpers from the chapter 5 interpreters used on this test. These ADTs correspond
to those in section 5.4.4 of the text.

eopl:error : (-> (symbol string datum ...) poof)

;; ---- ProcVal (procedure values) ADT --------
procval? : (type-predicate-for procval)
closure : (-> ((list-of symbol) expression environment) procval)
apply-procval : (-> (procval (list-of Expressed-Value)) Expressed-Value)

;; ---- reference ADT --------
a-ref : (forall (T) (-> (number (vector-of T)) (ref-of T)))
deref : (forall (T) (-> ((ref-of T)) T))
setref! : (forall (T) (-> ((ref-of T) T) void))



6

This page continues the reference material from the previous page. It describes types of
procedures from the 5-4-4.scm interpreter that you can use for problems on later pages.

;; ---- environment ADT ----------
;; type predicate
environment? : (type-predicate-for environment)
;; constructors
empty-env : (-> () environment)
extend-env : (-> ((list-of symbol) (list-of Expressed-Value) environment)

environment)
extend-env-recursively : (-> ((list-of symbol) (list-of (list-of symbol))

(list-of expression) environment)
environment)

;; observers
apply-env : (-> (environment symbol) Expressed-Value)
apply-env-ref : (-> (environment symbol) (ref-of Expressed-Value))
defined-in-env? : (-> (environment symbol) boolean)

;; ----- Objects -------------------
(deftype object->fields (-> (object) (vector-of Expressed-Value)))
(deftype object->field-ids (-> (object) (list-of symbol)))
(deftype object->class-name (-> (object) symbol))
(deftype object->class (-> (object) class))

;; ----- The Class Table (Class Names) and Classes ----
(deftype class-name->field-ids (-> (symbol) (list-of symbol)))
(deftype class-name->methods (-> (symbol) (list-of method)))
(deftype class-name->super-name (-> (symbol) symbol))
(deftype class-name->field-length (-> (symbol) number))
(deftype class->class-name (-> (class) symbol))
(deftype class->super-name (-> (class) symbol))

;; ---- Expressed-Value ADT --------
;; upcasts
(deftype number->expressed (-> (number) Expressed-Value))
(deftype procval->expressed (-> (ProcVal) Expressed-Value))
(deftype object->expressed (-> (object) Expressed-Value))
(deftype list->expressed (-> ((list-of Expressed-Value)) Expressed-Value))
(deftype symbol->expressed (-> (symbol) Expressed-Value))
;; downcasts
(deftype expressed->number (-> (Expressed-Value) number))
(deftype expressed->procval (-> (Expressed-Value) ProcVal))
(deftype expressed->object (-> (Expressed-Value) object))
(deftype expressed->list (-> (Expressed-Value) (list-of Expressed-Value)))
(deftype expressed->symbol (-> (Expressed-Value) symbol))
;; tests
(deftype procval->expressed? (-> (Expressed-Value) boolean))
(deftype object->expressed? (-> (Expressed-Value) boolean))



7

5. (25 points) Consider the following new syntax in the object-oriented language.

〈expression〉 ::= checkedassign 〈identifier〉 : 〈identifier〉 = 〈expression〉

The meaning of a checked assignment expression of the form checkedassign x : C = E is
that the expression E is evaluated and if it evaluates to an object whose class is C or a
subclass of C, then that object is assigned to x, and the value of E is returned; otherwise (if
the value of E is not an object of a C or a subclass of C) an error is issued. The following
are examples.

--> class c1 extends object
method initialize() 1

class c2 extends c1
class c3 extends c2
class notrelated extends object

method initialize() 2
let o1 = new c1()

o2 = new c2()
o3 = new c3()
y = 3

in begin
checkedassign y : c1 = new c1();
checkedassign y : c1 = o2;
checkedassign y : c1 = o3;
checkedassign o2 : c2 = o2;
checkedassign o2 : c3 = o3;
checkedassign o3 : c3 = checkedassign o3 : c3 = new c3();
quote thatallworks

end

thatallworks

--> class c1 extends object
method initialize() 1

class c2 extends c1
class c3 extends c2
let v = 4
in checkedassign v : c3 = new c1()

Error reported by eval-expression: Right hand side is not an instance of class c3

--> class a extends object method initialize() 1
class b extends object method initialize() 1
let v = 4 in checkedassign v : b = new a()

Error reported by eval-expression: Right hand side is not an instance of class b

Your job is to complete the implementation of the checkedassign expression, on the next
page.



8

To start the implementation of the checkedassign expression, assume that the following
are the new concrete and abstract syntax.

(define the-grammar
;; ...
(expression ("checkedassign" identifier ":" identifier "=" expression)

checkedassign-exp) )

(define-datatype expression expression?
;; ...
(checkedassign-exp (id symbol?) (class-name symbol?) (rhs-exp expression?)) )

Your job is to fill in the code for eval-expression below, plus any helping procedures you
need. (You can assume the other cases of eval-expression are already done. See the types
of the built-in procedures you can use starting on page 5. There is more space for your
answer on the next page if you need to continue.)

(deftype eval-expression (-> (expression environment) Expressed-Value))
(define eval-expression

(lambda (exp env)
(cases expression exp

;; ... assume other cases are done
;; fill in your answer for checkedassign below



9


