Spring 2004 Name:
Com S 342 Section:

Principles of Programming Languages

Makeup for Exam 2 on Recursion over Grammars

This test has 4 questions and pages numbered 1 through 9.

Special Instructions for this Test

Your code should type check for full credit. You may not use trustme! or has-type-trusted in
your code. You are not permitted to use the helping procedures named parse-... in your code.
Do not use set!.

Reminders

For this test, you can use one (1) page (8.5 by 11 inches, one (1) side, no less than 9pt font) of
notes. Handwriting is okay. No photo-reduction is permitted. Don’t use anything with printing on
the other side, please. These notes are to be handed in at the end of the test. Have your name in
the top right corner. Use of other notes or failure to follow these instructions will be considered
cheating.

If you need more space, use the back of a page. Note when you do that on the front.

This test is timed. We will not grade your test if you try to take more than the time allowed.
Therefore, before you begin, please take a moment to look over the entire test so that you can
budget your time.

For programs, indentation is important to us for “clarity” points; if your code is sloppy or hard
to read, you will lose points. Correct syntax also matters. Check your code over for syntax errors.
You will lose points if your code has syntax errors.

You can use helping procedures whenever you like. If you write recursive helping procedures,
please give a deftype declaration for them.

For Grading

Problem | Points
1

2
3
4

1. (25 points) This is a problem about the (sym-exp) grammar below.

(sym-exp) = (symbol) | (s-list)
(s-list) == ({(sym-exp)}*)

For this grammar you can use the following helping procedures.

symbol->sym-exp :
s-list->sym-exp :
sym-exp-symbol? :

(=> (symbol) sym-exp)
(-
(-
sym-exp-s-list? : (-
(-
(-

((1ist-of sym-exp)) sym-exp)
(sym-exp) boolean)

(sym-exp) boolean)

(sym-exp) symbol)

(sym-exp) (list-of sym-exp))

sym-exp—>symbol :

vV V. V V Vv V

sym-exp->s-list :

Write a Scheme procedure,

deepen : (-> (sym-exp) sym-exp)
that takes a (sym-exp), symexp, and returns a (sym-exp) that is just like symexp, except
that every each place where a symbol, say x, occurs in symexp, it is replaced by (z). Your
answer must use the helpers for the (sym-exp) grammar, and must type check for full credit.
If you write a helping procedure, be sure to give a deftype for it. Here are some examples:

(deepen (parse-sym-exp ’x)) ==> (x)
(deepen (parse-sym-exp ’y)) ==> (y)
(deepen (parse-sym-exp ’())) ==> ()
(deepen (parse-sym-exp ’(x + (y + 2)))) ==> ((x) (+) ((y) (+) (=2)))
(deepen (parse-sym-exp ’(x OO ((y)) O ((((q)))) z a b))
==> ((x) O (((y)) O (@) (= (@ (b))
(deepen (parse-sym-exp ’(olive ((((CCOO O x+y Oy O)I)) y)))
==> ((olive) ((CCCCO O)) G O G OIN)) (¥)))

2. (20 points) Consider the following grammar, with comments on the right side enclosed in
quotations (“ and ”). The comments are an aid to remembering the helping procedures,
whose types are shown on the next page.

(window-layout) ::= (window (symbol) (number) (number)) “window (name width height)”
| (horizontal {(window-layout)}*) “horizontal (subwindows)”
| (vertical {(window-layout)}*) “vertical (subwindows)”

where the nonterminals (number) and (symbol) have the same syntax as in Scheme.

Using the helpers whose types are shown on the next page, write a procedure,
total-area : (-> (window-layout) number)

that takes a (window-layout), wl, and returns the area represented by that layout. There

are examples on the next page. Please write your answer below.

The following are for the problem on the previous page.

The helping procedures for the window-layout type are as follows.

window?
horizontal?
vertical?
window
horizontal
vertical
window—>name

window->width
window->height
horizontal->subwindows :
vertical->subwindows

(window-layout) boolean)
(window-layout) boolean)
(window-layout) boolean)
(symbol number number) window-layout)

((list-of window-layout)) window-layout)
((list-of window-layout)) window-layout)
(window-layout) symbol)
(window-layout) number)
(window-layout) number)
(window-layout) (list-of window-layout))
(window-layout) (list-of window-layout))

AN AN A AN A A A A AN A A
|
V VV V V V V V V V.YV

The following are examples of the problem.

(total-area
(total-area
(total-area
(total-area
(total-area
(total-area
(total-area
(total-area

(total-area

(window ’a 5 10)) ==> 50
(window ’b 3 4)) ==> 12
(horizontal ’())) ==> 0
(horizontal (list (window ’a 5 10) (window ’b 3 4)))) ==> 62
(vertical >())) ==> 0
(vertical (list (window ’a 1 2) (window ’b 8 8)))) ==> 66
(horizontal (list (window ’pane 3 4) (vertical ’())))) ==> 12
(vertical (list (window ’title 10 10)
(horizontal
(1ist (window ’a 5 10)
(window ’b 3 4)))))) ==> 162
(horizontal
(list (window ’title 2 100)
(vertical (list (window ’panel-a 10 10)
(window ’panel-b 20 20)))
(horizontal (list (window ’left 3 50)
(window ’right 3 50)))
(vertical
(list
(vertical
(list
(horizontal
(list
(vertical
(list
(vertical ’())
(window ’deep 5 10)))))))))))) ==> 1050

3. (20 points) Consider the following grammar, with comments on the right side enclosed in
quotations (“ and ”). The comments are an aid to remembering the helping procedures,
whose types are shown on the next page.

(fraction-expression) ::= (symbol) “var-exp (id)”
| (number) “num-exp (num)”
| (/ (fraction-expression) (fraction-expression)) “div-exp (numer denom)”

where the nonterminals (number) and (symbol) have the same syntax as in Scheme.

Using the helpers whose types are shown on the next page, write a procedure,

eval-fe : (-> ((-> (symbol) number) fraction-expression) number)
that takes a mapping from symbols to numbers, env, and a (fraction-expression), fe, and
returns the value of fe, with each identifier, z, that occurs in fe replaced by the result of
applying env to x. Assume that every symbol that appears in fe is given a value by env.
For example, if the symbol foo occurs in fe, then you should assume that (env ’foo) is
defined. There are examples on the next page.

Please write your answer below. You may not use Scheme’s eval procedure in your answer.

The following are for the problem on the previous page.

The helping procedures for the fraction-expression type are as follows.

var-exp? (-> (fraction-expression) boolean)

num-exp? (-> (fraction-expression) boolean)

div-exp? (-> (fraction-expression) boolean)

var-exp (-> (symbol) fraction-expression)

num-exp (-> (number) fraction-expression)

div-exp (-> (fraction-expression fraction-expression) fraction-expression)
var-exp->id (-> (fraction-expression) symbol)

num-exp->num (-> (fraction-expression) number)

div-exp->numer : (-> (fraction-expression) fraction-expression)

~
|
\4

div-exp->denom :
parse-fraction-expression : (-> (datum) fraction-expression)

(fraction-expression) fraction-expression)

The following are a few very simple examples of the problem.

(eval-fe (lambda (x) 999) (var-exp ’x)) ==> 999
(eval-fe (lambda (y) 342) (num-exp 4)) ==> 4
(eval-fe (lambda (z) 342) (div-exp (num-exp 1) (var-exp ’z)) ==> 1/342

The following examples use the procedure envi, defined below.

(deftype envl (-> (symbol) number))
(define envl
(lambda (sym)

(cond
((eq? sym ’one) 1)
((eq? sym ’three) 3)
((eq? sym ’five) 5)
((eq? sym ’ten) 10)
(else (error "unknown symbol: " sym)))))

(eval-fe envl (div-exp (var-exp ’one) (num-exp 4))) ==> 1/4
(eval-fe envl (parse-fraction-expression ’(/ five 6))) ==> 5/6
(eval-fe envl (parse-fraction-expression ’(/ (/ five ten) ten))) ==> 1/20
(eval-fe envl (parse-fraction-expression ’(/ one (/ temn 2)))) ==> 1/5
(eval-fe envl (parse-fraction-expression ’(/ (/ ten 2) (/ ten 2)))) ==>1
(eval-fe envl

(parse-fraction-expression

>(/ (/ ten three) (/ ten (/ 1 five))))) ==> 1/15

(eval-fe envl

(parse-fraction-expression

(/2 (/1 (/ (/ 1000 (/ ten three)) (/ ten (/ 1 five))))))) ==> 12

4. (35 points) Consider the following grammar, with comments on the right side enclosed in
quotations (“ and ”). The comments are an aid to remembering the helping procedures,
which are shown below.

(statement) ::= (expression) “exp-stmt (exp)”

| (set! (identifier) (expression)) “set-stmt (id exp)”
(expression) ::= (identifier) “var-exp (id)”

| (number) “num-exp (num)”

| (begin {(statement)}* (expression)) “begin-exp (stmts exp)”

where an (identifier) has the same syntax as a Scheme (symbol).

The following are the types of the helping procedures for this grammar.

exp-stmt? -> (statement) boolean)

set-stmt? -> (statement) boolean)

var-exp? -> (expression) boolean)

num-exp? -> (expression) boolean)
begin-exp? -> (expression) boolean)

exp-stmt -> (expression) statement)
set-stmt -> (symbol expression) statement)
var-—exp -> (symbol) expression)

num-exp -> (number) expression)

begin-exp
exp-stmt->exp
set-stmt->id
set-stmt->exp
var-exp->id
num-exp->num
begin-exp->stmts :
begin-exp->exp
parse-statement
parse-expression :

((1ist-of statement) expression) expression)
(statement) expression)

(statement) symbol)

(statement) expression)

(expression) symbol)

(expression) number)

(expression) (list-of statement))
(expression) expression)

(datum) statement)

(datum) expression)

/\/‘\/‘\r\/‘\r\/\/\/‘\/l\/‘\/\/‘\/‘\r\/‘\r\/\/\
YV VV V V VV VYV VYV YV VYV VYVYVYVYV

Using these helpers, write a procedure,

replace-unbound : (-> ((list-of symbol) statement) statement)
that takes a list of symbols, bound, and a statement, stmt, and returns a statment that is
just like stmt, except that every place where an (identifier) that is not in the list bound
occurs, that identifier is replaced by the symbol unbound!.

Hint: use memq : (forall (T) (-> (T (list-of T)) boolean)), which is a built-in
procedure in Scheme, to test if a symbol occurs in a list of symbols.

Examples are on the next page. Space for your answer is on the page after that.

The following are examples for the problem on the previous page. Note that each example is
an equation; in each equation, both sides are expressions in Scheme that evaluate to a value

of type statement.

(replace-unbound

(replace-unbound

(replace-unbound

(replace-unbound

(replace-unbound

(replace-unbound

(replace-unbound

(replace-unbound
’(a b c)

(parse-statement
= (parse-statement

(replace-unbound
>(a b c)

'(xy 2)
(exp-stmt
(exp-stmt
(xy 2z)
(exp-stmt
(exp-stmt
’(a b c)
(exp-stmt
(exp-stmt
’(a b c)
(exp-stmt
(exp-stmt
’(a b c)
(exp-stmt

(exp-stmt

(xy 2z)
(exp-stmt

(exp-stmt

'(xy 2z)
(set-stmt

(set-stmt

' (set!
’ (set!

(parse-statement

’(set! a (begin (begin
= (parse-statement

’(set! a (begin (begin

(replace-unbound
>(a b c)

(parse-statement
= (parse-statement

(var-exp ’y)))

(var-exp ’y))

(var-exp ’a)))

(var-exp ’unbound!))

(var-exp ’a)))

(var-exp ’a))

(num-exp 3)))

(num-exp 3))

(begin-exp (list (set-stmt ’x (var-exp ’a)))
(var-exp ’x))))

(begin-exp (list (set-stmt ’unbound! (var-exp ’a)))
(var-exp ’unbound!)))

(begin-exp (list (set-stmt ’x (var-exp ’a)))
(var-exp ’x))))

(begin-exp (list (set-stmt ’x (var-exp ’unbound!)))
(var-exp ’x)))

’x (begin-exp (list (set-stmt ’x (var-exp ’a)))

(var-exp ’x))))
’x (begin-exp (list (set-stmt ’x (var-exp ’unbound!)))

(var-exp ’x)))

x (begin (set! x a) x))))
unbound! (begin (set! unbound! a) unbound!)))

(set! b (begin (set! x a) x)) b)))))

(set! b (begin (set! unbound! a) unbound!)) b))))

’(set! a (begin x))))
’(set! a (begin unbound!)))

Fill in your answer below.

