
A Type Notation for Scheme

by Gary T. Leavens, Curtis Clifton, and Brian Dorn

TR #05-18a
August 2005, revised January 2006

Copyright c© 2005-6 by Gary T. Leavens, Curtis Clifton, and Brian Dorn
This document is distributed under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation; either version 2.1, or (at your option) any
later version.
Version $Revision: 1.47 $ of $Date: 2006/02/02 04:19:56 $

Department of Computer Science, Iowa State University
226 Atanasoff Hall

Ames, Iowa 50011-1041, USA



i

Table of Contents

1 Overview of the Type System . . . . . . . . . . . . . . 1
1.1 Tool Support Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Notation for Type Expressions. . . . . . . . . . . . . . 3
2.1 Basic Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Datum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Void . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Poof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Applied Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Procedure Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Procedure Types with Fixed Numbers of Arguments
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.2 Variable Argument Procedure Types . . . . . . . . . . . . . 7
2.4 Polymorphic Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Intersection Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Variant Record Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 Type Predicate Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Additions to Scheme . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Expressions Added To Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Cases Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Has-Type Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Test-Type Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.4 Trusted Has-Type Expressions . . . . . . . . . . . . . . . . . . 15
3.1.5 Arrow Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.6 Forall Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Definitions Added To Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 Deftype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Define-Datatype Definitions . . . . . . . . . . . . . . . . . . . . 18

3.3 Top-level Forms Added To Scheme . . . . . . . . . . . . . . . . . . . . . . 20
3.3.1 Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 Provide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.3 Require . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.4 Require-for-syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.5 Defrep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Type Checker Commands and Options . . . . . 25

5 Future Work and Conclusions . . . . . . . . . . . . . 26



ii

Appendix A Grammar Summary . . . . . . . . . . . . 27
A.1 Notation for Type Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . 27
A.2 Additions to Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



Chapter 1: Overview of the Type System 1

1 Overview of the Type System

The Typedscm dialect of Scheme is a variant on the Scheme dialect used in the book Es-
sentials of Programming Languages [Friedman-Wand-Haynes01]. Typedscm adds facilities
for declaring types in a Scheme-inspired notation. For example, one can write

(deftype add1 (-> (number) number))
(define add1 (lambda (n) (+ n 1)))

Typedscm allows for both type checking and type inference; that is, type declarations
can be omitted in many cases. For example, Typedscm would infer the type of add1 even
if the deftype declaration above were not given.

The rest of this section describes the tool support we provide and gives a brief overview
of the rest of this document.

1.1 Tool Support Overview

Typedscm also comes with tool support, namely a type checker, which is itself written
in Typedscm.

Our type checker for Scheme is invoked either by a button in DrScheme, or by load-
ing the file ‘chez/tc-eval.scm’ into Scheme [R5RS] from a library. This can also be
done automatically by using a special command at the operating system prompt, such as
bin/mzscheme-typed or bin/scheme-typed, which loads the appropriate files.

When using DrScheme, once you have selected the Typedscm language (from the Lan-
guage menu) you can use Typedscm in writing Scheme code. All the syntax is implicitly
available at this point. (See Section 3.3.1 [Module], page 20, for details on using Typedscm
inside modules.)

In DrScheme, pressing the “Type Check” button in DrScheme type checks the file in
the Definitions window, and if there are any type errors, these are displayed in a popup
window.

If desired, in DrScheme one can also get a type checked read-eval-print loop by first
selecting the Typedscm langauge from the Language menu, and then executing the following
two forms in the interactions window.

(require (lib "tc-type-check-and-eval-loop.scm" "typedscm"))
(type-check-and-eval-loop)

If you are using Chez Scheme, then loading the file ‘chez/tc-eval.scm’ is the way to
start a new read-eval-print loop. (The contents of this file is essentially the two lines above.
As mentioned above, various scripts in the ‘bin’ directory do this automatically.) The
read-eval-print loop reads a Scheme expression from the user’s input, type checks it, and
if it does type check, proceeds to evaluate it using the standard scheme evaluator. If the
expression seems to contain a type error, execution is not attempted, and instead an error
message is printed.

Scheme files loaded or required from the read-eval-print loop are also type checked, as
are files that are loaded or required from other files being loaded and required, etc. Scheme
files may themselves contain type declarations.

A Scheme file with our type annotations can be used in either DrScheme or
Chez Scheme. In DrScheme, one simply uses the “TypedScm” language. This
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automatically includes Scheme macros and procedures, found in the library file
‘drscheme/tc-ignore-types-at-runtime.scm’. If you are using Chez Scheme you must
use the library file ‘chez/tc-ignore-types-at-runtime.scm’; this file is also loaded
automatically by the Unix command bin/scheme-untyped.

See the ‘README.txt’ file in the distribution for detailed installation instructions.

1.2 Outline

The following sections describe the notation for type expressions used in the checker, our
additions to Scheme for declaring various kinds of type information, some hints on what
type errors may mean, and various configuration parameters and commands recognized by
the type checker. See Appendix A [Grammar Summary], page 27, for a summary of the
type checker’s additions to Scheme’s syntax.
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2 Notation for Type Expressions

In this section we discuss the notations used in type expressions and their meaning.

A type can be thought of as a set of values with certain associated procedures. For
example we use number as the name of the type of all numbers (both exact and inexact,
real and integer) in Scheme. The procedures that work on numbers include + and *.

Types can also be thought of as abstractions of the type predicates found in Scheme.
For example, the type number is an abstraction of the built-in Scheme predicate number?
in the sense that if (number? x) is true, then x has type number. The following table gives
an overview of this abstraction, by relating types to type predicates, and by giving some
examples of expressions that satisfy the given predicates. (If this is confusing at this point,
you may want to come back to it after you have read about the notation below.)

Correspondence between types, predicates, and expressions

Type Type Example expressions that:
expression predicate have type, satisfy predicate
------------------------------------------------------------------
boolean boolean? #t, #f
char char? #\a, #\Z, #\newline
number number? 0, 342.54, -3
input-port input-port? (current-input-port)
output-port output-port? (current-output-port)
string string? "a string", ""
symbol symbol? ’a-symbol, (quote this)
datum datum? #t, #\a, 0, "a str", sym
poof poof? (error "bad index")
void void? (newline)
(list-of number) (list-of number?) (list 3 4), ’(2 2 7), ’()
(list-of datum) (list-of datum?) (list 3 #t 3 #\a), ’()
(list-of char) (list-of char?) (list #\a #\b), ’()
(vector-of number) (vector-of number?) (vector 3 4), ’#(2 2 7), ’#()
(vector-of char) (vector-of char?) (vector #\a #\b), ’#()
(pair-of char char) (pair-of char? char?) (cons #\a #\b), ’(#\a . #\b)
(-> () char) (-> () char?) (lambda () #\a)
(-> () void) (-> () void?) newline

(-> (char) (-> (char?) (lambda (c)
boolean) boolean?) (eqv? #\a c))

(-> (number ...) (-> (number? ...) +, *
number) number?)

The non-standard type predicates that are used above are all defined in two files named
‘tc-ignore-types-at-runtime.scm’, one of which is found in the type checker’s ‘drscheme’
directory, and the other of which is found in its ‘chez’ directory.

To begin explaining all of this, we start with the grammar for type expressions.
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type-exp ::= monomorphic-type
| polymorphic-type

monomorphic-type ::= basic-type
| applied-type
| procedure-type
| intersection-type
| variant-record-type
| type-predicate-type

Type expressions are pieces of syntax that denote various types. The rest of this section
explains each of these pieces of the syntax. See Section 2.4 [Polymorphic Types], page 8,
for the syntax of polymorphic-type.

2.1 Basic Types

The syntax of a basic-type is as follows.
basic-type ::= identifier
identifier ::= an <identifier> in the Scheme syntax [R5RS].

A basic type is either a built-in type, such as number, a type variable (see Section 2.4
[Polymorphic Types], page 8), or a user-defined type (see Section 3.2.2 [Define-Datatype
Definitions], page 18).

Some of the built-in types are the types used for atomic data items in Scheme. These
are displayed in the following table.

Built-in Basic Types For Atomic Scheme Data

Name Example expressions that have that type
----------------------------------------------------
boolean #t, #f
char #\a, #\Z
number 0, 342.54, -3
string "a string", ""
symbol ’a-symbol, (quote this)
input-port (current-input-port)
output-port (current-output-port)

The type checker also knows about several other special basic types: datum, poof, and
void. These are described below.

2.1.1 Datum

The built-in basic type datum is the type of all the values in Scheme. Every Scheme
object has this type; that is, datum is the supertype of all types. (In the literature on type
checking, such a type is sometimes called “top”.)

One use of datum is in type checking heterogeneous lists. In Scheme the elements of a list
do not all have to be of the same type; such a list is heterogeneous. A list whose elements
are all of the same type is homogeneous. The type checker uses types of the form (list-of
T) for lists whose elements all have some type T. (See Section 2.2 [Applied Types], page 5,
for the meaning of list-of.) For example, a list of booleans such as (#t #f) has the type
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(list-of boolean), and a list of numbers such as (3 4 2) has the type (list-of number).
For a list such as (#t 3 #f), the type checker uses the type (list-of datum).

Although datum is the supertype of all types, the type checker does not infer that an
expression has type datum unless forced to do so [Jenkins-Leavens96]. One reason for this
is to give better error messages, since otherwise every expression would have a type datum.

2.1.2 Void

The built-in basic type void, as in C, C++, or Java, is used to represent the return
type of a procedure that returns but doesn’t return a useful result. For example, Scheme’s
procedure display has the following type.

(-> (datum) void)

This means that a call such as (display ’Scheme) has no value, and should only be
used for its side effects.

See Section 2.3 [Procedure Types], page 6, for an explanation of the -> syntax.

2.1.3 Poof

The built-in basic type poof is used for the return types of procedures that do not
return to their caller. An example is the built-in Scheme procedure error, whose type is
the following.

(-> (datum ...) poof)

This means that a call such as (error ’wrong!) does not return to its caller.

The type checker considers poof to be a subtype of all types [Jenkins-Leavens96]. The
reason for this is to allow code such as the following to type check.

(if (not (zero? denom))
(/ num denom) ; has type: number
(error "zero denominator!")) ; has type: poof

It is sensible that the above expression has type number, because when it has a value at
all, that value is of type number.

2.2 Applied Types

The syntax of an applied-type is as follows. The notation { monomorphic-type }+ means
one or more repetitions of the nonterminal monomorphic-type.

applied-type ::= ( identifier { monomorphic-type }+ )

Applied types denote the result of applying some type constructor, such as list-of or
vector-of to one or more type parameters. For example, we write (list-of number) for
the type of lists of numbers. The lists (1 2 3) and (3.14 2.73) both have this type. In
the type (list-of number), list-of is the type constructor, and number is the only type
parameter. The application of a type constructor to one or more type parameters produces
an instance of that type constructor.

Some of the built-in type constructors are used for the types of non-atomic data in
Scheme. These are displayed in the following table.
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Example Instances of Built-in Type Constructors

Instance Example expressions that have that type
-----------------------------------------------------------
(list-of number) (list 3 4 2)
(list-of boolean) (cons #t (cons #f ’()))
(vector-of number) (vector 5 4)
(pair-of number number) (cons 3 4)

Type constructors are symbols, and cannot be type variables (see Section 2.4 [Polymor-
phic Types], page 8).

2.3 Procedure Types

The syntax of procedure types is given below.
procedure-type ::= ( -> ( { monomorphic-type }* ) monomorphic-type )

| ( -> ( { monomorphic-type }* monomorphic-type ... ) monomorphic-type )

In the above, the notation { monomorphic-type }* means zero or more repetitions of
the nonterminal monomorphic-type. The symbol ... used in the second alternative is a
terminal symbol in the grammar; it is used in the types of variable argument procedures.

We explain the two different kinds of procedure types below.

2.3.1 Procedure Types with Fixed Numbers of Arguments

A procedure type denotes the type of a Scheme procedure. In the notation, the types
of the arguments are enclosed in parentheses, and these are followed by the type that the
procedure returns. For example, the Scheme procedure substring has the following type.

(-> (string number number) string)

This means that substring is a procedure with 3 arguments, the first of type string, the
second of type number, and the third of type number, which returns a string.

You can derive such a type from a lambda expression systematically. Take the lambda
expression, replace lambda by ->, replace each formal parameter name by its type, and
replace the body by its type. For example, the type of the lambda expression

(lambda (n m) (+ 2 (+ n m)))

is the following.
(-> (number number) number)

As another example, the type of sum in the following definition
(define sum

(lambda (ls)
(if (null? ls)

0
(+ (car ls) (sum (cdr ls))))))

is the following.
(-> ((list-of number)) number)

Here’s an example of a curried procedure, append3-c,
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(define append3-c
(lambda (ls1)
(lambda (ls2)

(lambda (ls3)
(append ls1 (append ls2 ls3))))))

which has a the following “curried” procedure type.

(forall (T)
(-> ((list-of T))

(-> ((list-of T))
(-> ((list-of T))

(list-of T)))))

The type above for append3-c is polymorphic (see Section 2.4 [Polymorphic Types],
page 8). The way to read it is to say that, for all types T, the procedure takes a list of
elements of type T and returns a procedure; that procedure in turn takes a list of elements
of type T and returns a procedure; that procedure in turn takes a list of elements of type
T and returns a list of elements of type T.

2.3.2 Variable Argument Procedure Types

A variable argument procedure type denotes the type of a procedure constructed with
Scheme’s “unrestricted lambda”. The notation is just like that of a normal procedure type
(see Section 2.3.1 [Procedure Types with Fixed Numbers of Arguments], page 6), except
that the last thing in the list of argument types is a type expression followed by .... This
means that the procedure may take 0 or more actual arguments of the type immediately
preceding .... For example, consider the type

(-> (number ...) number)

This is the type of a procedure that takes 0 or more arguments of type number. This is the
type of sum* in the following.

(define sum*
(lambda args

(sum args)))

It follows that all of the following calls to sum* have type number.

(sum* )
(sum* 1)
(sum* 2 1)
(sum* 3 2 1)
(sum* 4 3 2 1)

As another example, the lambda expression

(lambda (num1 . nums) (sum (cons num1 nums)))

has the following type.

(-> (number number ...) number)

Note that, unlike the type of sum*, the above type only permits calls with one or more
numbers as arguments, and does not permit calls with no arguments.
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2.4 Polymorphic Types

A polymorphic type denotes a family of types, all of which have a similar shape. The
shape of the instances in this family are described by the monomorphic-type in the following
syntax.

polymorphic-type ::= ( forall type-formals monomorphic-type )
type-formals ::= ( { type-variable }* )
type-variable ::= identifier

Because of the type inference algorithm [Milner78] used in the type checker [Jenkins-
Leavens96], the type checker cannot deal with nested polymorphic types. This is why the
syntax for polymorphic-type only permits a monomorphic-type inside the forall. See
Chapter 2 [Notation for Type Expressions], page 3, for the syntax of monomorphic-type.

Indeed, as a predicate transformer, the run-time version of forall is the same as lambda
(see Section 3.1.6 [Forall Expressions], page 17). In type checking, the notion that corre-
sponds to calling this lambda is called instantiation.

To explain what instantiation of a polymorphic type means, consider the following ex-
ample.

(forall (T) (list-of T))

If we instantiate this type, by supplying a type, such as number, for the type variable T, we
obtain an instance of the above type, in this case (list-of number). The following are all
instances of the type (forall (T) (list-of T)).

(list-of number)
(list-of boolean)
(list-of char)
(list-of (vector-of number))
(list-of (vector-of boolean))
(list-of (-> (number) number))
(list-of (-> ((list-of number)) number))
(list-of (list-of number))
(list-of (list-of (list-of boolean)))

Each polymorphic type has an infinite number of instances.
Armed with the notion of instantiation, and of the instances of a polymorphic type,

we can describe the meaning of a polymorphic type. Using the analogy between types and
sets, a polymorphic type denotes an infinite intersection of the sets that its instances denote.
Thus, for example, the type (forall (T) (list-of T)) denotes the infinite intersection of
all of its instances, including those listed above. It turns out that the only Scheme value
with this type is the empty list, (). Another way of saying this is to say that () has the
type (list-of T) for all types T.

Using the analogy between types and predicates, a polymorphic type denotes a predicate
transformer. This predicate transformer, when given predicates corresponding to each of
the formals, returns a predicate. The returned predicate is the denotation of the corre-
sponding instance of the polymorphic type. For example, the type (forall (T) (list-of
T)) denotes a predicate transformer we write as (forall (T?) (list-of T?)), which is
equivalent to (lambda (T?) (list-of T?)). When applied to a type predicate, such as
number?, this predicate transformer returns the predicate (list-of number?). Since the
predicate number? corresponds to the type number, this means that the predicate (list-of
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number?) should correspond to the instance (list-of number), which it does. This can
be illustrated as follows.

(forall (T) (list-of T)) -- denotes --> (forall (T?) (list-of T?))
!
! ||
!
! (lambda (T?) (list-of T?))
! !

applied to applied to
number number?
yields yields

! !
! !
v v

(list-of number) -- denotes --> (list-of number?)

Another way to illustrate this analogy is through the following table.

Types generators, predicate transformers, and expressions

Type Type Example expressions that:
expression predicate have type, satisfy predicate

transformer for all values of formals
------------------------------------------------------------------
(forall (T) (forall (T?)

(list-of T)) (list-of T?)) ’()

(forall (T) (forall (T?)
(-> (T) (-> (T?) (lambda (x)

char)) char?)) #\a)

(forall (S T) (forall (S? T?)
(-> (S T) (-> (S? T?) (lambda (x y)

T)) T?)) y)

(forall (T) (forall (T?)
(-> (T T ...) (-> (T? T? ...) (lambda args

T)) T?)) (car args))

(forall (S T U) (forall (S? T? U?)
(all-of (all-of cons
(-> (T (-> (T?

(list-of T)) (list-of T?))
(list-of T)) (list-of T?))

(-> (S (list-of U)) (-> (S? (list-of U?))
(list-of (list-of
datum)))) datum?))))

As illustrated above, polymorphic types are especially useful for describing the types
of higher-order functions. For such functions, one often needs to describe procedure types
that are not as specific as the ones used in the previous subsection, but which are also not
so general as datum.
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In making instances, it is important to replace type variables consistently throughout.
For example, Scheme’s built in procedure map has the following type.

(forall (S T)
(-> ((-> (S) T) (list-of S)) (list-of T)))

This means that when map is used, the type checker must find two types S and T such
that the first argument to map has type (-> (S) T), and the second has type (list-of
S); once the specific types for S and T are chosen, consistent replacement dictates that
the result of a call will have type (list-of T). For example, consider type checking the
following call.

(map odd? (list 3 4 2 3))

Since the type of odd? is (-> (number) boolean), the type checker is forced to choose
number for S and boolean for T; these are the only choices that match the type of odd?
correctly against the type of map’s first argument. Once the type checker has made this
choice, however, it is no longer free to use different types for S and T in checking the rest of
the application. So it must check that the second argument in the call has type (list-of
number), because it must consistently replace S with number. Similarly it must give the type
of the result as (list-of boolean), because it must consistently replace T with boolean.

Another way to view this process is that the type checker chooses an instance of map’s
type, and uses that in type checking the call. The instance it uses is the following.

(-> ((-> (number) boolean) (list-of number)) (list-of boolean))

What instance would be used in checking the types of the following application?
(map (lambda (n) (+ n 1)) ’(3 -2 1))

Since datum is a type expression, it can be used in an instance to replace type variables
in a polymorphic type expression. For example, one type for Scheme’s cons procedure is as
follows.

(forall (T) (-> (T (list-of T)) (list-of T)))

This has the type (-> (datum (list-of datum)) (list-of datum)) as an instance.

2.5 Intersection Types

The syntax of an intersection-type is as follows.
intersection-type ::= ( all-of { monomorphic-type }+ )

Here the notation { monomorphic-type }+ means one or more repetitions of the nonterminal
monomorphic-type.

If one thinks of types as sets of values, then an intersection type can be thought of as the
intersection of several such sets. If one thinks of types as predicates, then an intersection
type corresponds to the application of all of the predicates and a conjunction of the results.
Therefore, if x has type (all-of S T), then x has both type S and type T. For example,
since ’() has both types (list-of number) and (list-of boolean), the empty list also
has the following type.

(all-of (list-of number) (list-of boolean))

One use of such intersection types is for procedures that can be used in several ways.
For example, Scheme’s cons procedure can make homogeneous lists, heterogeneous lists,
and pairs. Thus a better type for cons than the one given above is the following.
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(forall (S T U V W)
(all-of (-> (T (list-of T)) (list-of T))

(-> (S (list-of U)) (list-of datum))
(-> (V W) (pair-of V W))))

The type checker considers the order of types listed in an intersection type when doing
type inference [Jenkins-Leavens96]. It will first try to use the first type listed, then the
second, and so on. For example, in the expression (cons 2 ’(3)), the arguments to cons
are of type number and (list-of number), so the type checker uses an instance of the first
type in the above intersection type for cons, (-> (T (list-of T)) (list-of T)), and so
the type of the expression is inferred to be (list-of number). However, the type of the
expression (cons 2 ’(#t)) is inferred to be (list-of datum) since there is no instance of
the first type in the intersection type that matches the argument types. (This is because T
cannot be consistently replaced by both number and boolean. See Section 2.4 [Polymorphic
Types], page 8, for more about consistent replacement.) Finally, the type of the expression
(cons 2 3) is inferred to be (pair-of number number), since no instance of either of the
first two types for cons matches the second argument’s type.

The type checker never infers that an expression has an intersection type unless it is
forced to do so. However, one can use deftype (see Section 3.2.1 [Deftype], page 18) to
declare such a type. The types of built-in procedures such as cons make heavy use of
carefully constructed intersection types.

2.6 Variant Record Types

The syntax of an variant-record-type is as follows.
variant-record-type ::= ( variant-record { variant }+ )
variant ::= ( identifier { field-type-binding }* )
field-type-binding ::= ( identifier monomorphic-type )

Again, the notation { variant }+ means one or more repetitions of the nonterminal variant,
and the notation { field-type-binding }* means zero or more repetitions of the nonterminal
field-type-binding,

A variant record type is the type of a name defined with define-datatype (see Sec-
tion 3.2.2 [Define-Datatype Definitions], page 18) [Friedman-Wand-Haynes01]. It lists the
complete set of variants and their field-type bindings. Each field-type binding associates a
field name with the name of that field’s type. The order among the field-type bindings in
a variant is significant, but the order among the variants themselves is not.

For example, given the following define-datatype declaration
(define-datatype pi-calc-expr pi-calc-expr?

(parallel-composition (list-of pi-calc-expr?))
(restriction (name symbol?) (body pi-calc-expr?))
(input (name symbol?) (formals (list-of symbol?))

(body pi-calc-expr?))
(output (name symbol?) (actuals (list-of symbol?)))
(replication (body pi-calc-expr?))
(null ))

then the name pi-calc-expr has the following type:
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(variant-record
(parallel-composition (list-of pi-calc-expr))
(restriction (name symbol) (body pi-calc-expr))
(input (name symbol) (formals (list-of symbol))

(body pi-calc-expr))
(output (name symbol) (actuals (list-of symbol)))
(replication (body pi-calc-expr))
(null ))

A variant record S is a subtype of another variant record type T if for each variant of S
there is a corresponding variant in T with the same identifier, the same number of fields,
and such that the nth field in the variant of S, the field type is a subtype of the field type
of T ’s nth field.

2.7 Type Predicate Types

The syntax of an type-predicate-type is as follows.
type-predicate-type ::= ( type-predicate-for monomorphic-type )

A type predicate is a procedure that can be applied to any Scheme object, and yields
a boolean value; hence a type predicate type such as (type-predicate-for number) is a
subtype of (-> (datum) boolean), meaning that a type predicate can be used anywhere
a procedure of type (-> (datum) boolean) is required. However, type predicate types are
used by the type checker to infer the type tested for by the Scheme expressions used in
define-datatype declarations (see Section 3.2.2 [Define-Datatype Definitions], page 18).

The following are some examples of type predicate types and expressions that have those
types.

Type Expressions that:
expression have that type
------------------------------------------------------------------
(type-predicate-for boolean) boolean?
(type-predicate-for char) char?
(type-predicate-for number) number?
(type-predicate-for string) string?
(type-predicate-for symbol) symbol?
(type-predicate-for datum) datum?
(type-predicate-for (list-of number)) (list-of number?)
(type-predicate-for (list-of char)) (list-of char?)
(type-predicate-for (vector-of char)) (vector-of char?)
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3 Additions to Scheme

This section describes additions that the type checker makes to Scheme’s expressions,
definitions, top-level forms, and programs.

3.1 Expressions Added To Scheme

The type checker adds the following syntax to Scheme expressions. See the formal syntax
in the Revised(5) Report on Scheme [R5RS] for the syntax of Scheme’s standard expression,
i.e., for other alternative productions for expression.

expression ::= cases-exp
| has-type-exp
| test-type-exp
| has-type-trusted-exp
| arrow-exp
| forall-exp
| a standard Scheme <expression> from [R5RS]

The details of this syntax are explained in the following subsections.

3.1.1 Cases Expressions

The cases-exp is part of the define-datatype mechanism found in the second edition
of Essentials of Programming Languages [Friedman-Wand-Haynes01]. The syntax for a
cases-exp, adapted from [Friedman-Wand-Haynes01] (p. 47), is given below. The notation
{ field-name }* means zero or more repetitions of the nonterminal field-name.

cases-exp ::= ( cases type-name expression
{ cases-clause }+ )

| ( cases type-name expression
{ cases-clause }*
( else sequence ) )

type-name ::= identifier
cases-clause ::= ( variant-name ( { field-name }* ) sequence )
variant-name ::= identifier
field-name ::= identifier
sequence ::= 0 or more <command>s followed by an expression [R5RS]

For example, suppose we have the following definition (see Section 3.2.2 [Define-Datatype
Definitions], page 18).

(define-datatype course course?
(regular (professor string?) (subject string?) (catnum number?))
(seminar (leader string?) (subject string?)))

Then the following procedures, which uses a cases-exp, can extract the subject of a course.
(define course->subject

(lambda (c)
(cases course c

(regular (professor subject catnum) subject)
(seminar (leader subject) subject))))
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3.1.2 Has-Type Expressions

The syntax of a has-type-exp is as follows.
has-type-exp ::= ( has-type type-exp expression )

A has-type-exp is used to write a type into an expression. The type checker checks that
the expression in the body of has-type has the type given, and the run-time value of the
whole expression is the value of the body. For example, (has-type number 3) type checks
because 3 has type number; the value of (has-type number 3) is 3.

A has-type-exp is especially useful with Scheme’s let and letrec expressions, because
it allows one to declare the type of a procedure in places where a deftype (see Section 3.2.1
[Deftype], page 18) is not permitted. An example is the following.

(define fact
(lambda (n)
(letrec

((fact-iter
(has-type (-> (number number) number)

(lambda (n acc)
(if (zero? n)

acc
(fact-iter (- n 1) (* n acc)))))))

(fact-iter n 1))))

Another use of a has-type-exp is to force the type checker to use datum (see Section 2.1.1
[Datum], page 4) in a type. For example, one might write:

(cons (has-type datum 1) ’())

which will force the type checker to infer the type (list-of datum) for this expression,
instead of (list-of number).

3.1.3 Test-Type Expressions

The syntax of a test-type-exp is as follows.
test-type-exp ::= ( test-type expression expression )

A test-type-exp has two subexpressions. The first must be a type predicate; that is, it
must have a type (type-predicate-for T), where T is some type. This type predicate
is used to test the result of the second expression at runtime. If this test passes, then
the value of the second expression is returned, otherwise the expression results in an error.
Thus, the meaning of a test-type-exp is the meaning of the second expression, provided its
value passes the type predicate.

Type checking of a test-type-exp is done differently than for the has-type expression
(see Section 3.1.2 [Has-Type Expressions], page 14). The type checker does not perform
type checking on the second expression in a test-type-exp, but simply accepts that the type
of the expression overall is the type, T, that the type predicate tests for. In effect, it waits
until runtime to check the type of the second expression. This allows one to suppress error
reports when the code is correct but the type checker cannot prove it. For example, the
current type checker does not take the flow of control into account; thus when a dynamic
test is made to determine the type of a value using a type predicate, the type checker does
not use this information. The type checker complains that the following code is not correct,
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(let ((input (read)))
(if (number? input)

(* 3 input)
(error "please enter a number)))

because input, it says, is not a number. However, this error message can be avoided by use
of test-type as follows.

(let ((input (test-type number? (read))))
(* 3 input))

Thus the test-type-exp expression can be used as an alternative to the has-type-trusted-
exp, to overcome limitations of the type checker.

3.1.4 Trusted Has-Type Expressions

The syntax of a has-type-trusted-exp is as follows.
has-type-trusted-exp ::= ( has-type-trusted type-exp expression )

The meaning of a has-type-trusted-exp is just like a has-type expression (see Sec-
tion 3.1.2 [Has-Type Expressions], page 14), but it is type checked differently. The type
checker does not perform type checking on the expression, but simply accepts the given
type.

There are two main uses for the has-type-trusted-exp.
The first is to overcome conservatism in type inference. For example, the type checker will

not automatically that an expression has an intersection-type (see Section 2.5 [Intersection
Types], page 10); hence when declaring procedures that have an intersection-type, the use
of a has-type-trusted-exp is mandatory. Nor will it automatically infer that an expression
has type datum.

The second use of the has-type-trusted-exp is to overcome limitations of the type checker,
in other words, to suppress spurious error reports. For example, the current type checker
does not control flow into account; thus when a dynamic test is made to determine the type
of a value using a type predicate, the type checker does not use this information. The type
checker complains that the following code is not correct,

(cond
((symbol? exp) (symbol exp))
((list? exp) (s-list (parse-s-list exp)))
(else (error "parse-sym-exp: bad syntax: " exp)))

because exp, is treated both as a symbol and as a list. However, this error message can be
avoided by use of has-type-trusted as follows.

(has-type-trusted
datum
(cond
((symbol? exp) (symbol exp))
((list? exp) (s-list (parse-s-list exp)))
(else (error "parse-sym-exp: bad syntax: " exp))))

The has-type-trusted form should be used sparingly, because one can suppress real
errors with it. For example, the use of has-type-trusted in the following suppresses a
real, but subtle type error, which will now occur at run-time when the procedure is called.
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(define add-to-list
(lambda (num ls)

(if (null? ls)
’()
(cons (+ num (car ls))

(has-type-trusted
(list-of number)
(add-to-list (cdr ls))))))) ; wrong!

(In the example above, the recursive call on the last line doesn’t pass the right number of
arguments, since it leaves out the argument num.)

When possible, use the test-type-exp (see Section 3.1.3 [Test-Type Expressions],
page 14), which also can be used to avoid type checking, but will do type checking at
run-time.

Another alternative to using has-type-trusted in certain situations is to use the pro-
cedures found in the library module relax-type-checking.scm. That module’s ignore
procedure can be used to say that the result of a expression is ignored, when the type
checker demands that the expression have type void. Similarly, its true? procedure can
be used to say that the value will be interpreted as either #f or not, when the type checker
demains that the expression have type boolean. The module are has several procedures for
dealing with pairs (make-pair, pair-first, pair-second), which can help get around the
type checker’s reluctance to use pair-of types.

3.1.5 Arrow Expressions

The syntax of an arrow-exp is as follows.
arrow-exp ::= ( -> ( { expression }* ) expression )

| ( -> ( { expression }* expression ... ) expression )

An arrow-exp is used to construct a type predicate that corresponds to a procedure type
(see Section 2.3 [Procedure Types], page 6). The meaning of an <arrow-exp> is the type
predicate procedure?, except that the type checker can use the type predicates to construct
more specific procedure types. For example, the following expression

(-> (boolean? number?) boolean?)

has type
(type-predicate-for (-> (boolean number) boolean))

That is, the expression corresponds to the type (-> (boolean number) boolean) (see Sec-
tion 2.7 [Type Predicate Types], page 12). This is more specific than the type (-> (datum
...) datum) which the type checker thinks corresponds to the type predicate procedure?.
(Note that the type of procedure? itself is not the issue, the issue is what type corresponds
to an object that satisfies the predicate procedure?. See Chapter 2 [Notation for Type
Expressions], page 3, for a table of such correspondences.)

Since an arrow-exp is a type predicate, such an expression can be used as one of the
subexpressions of an arrow-exp. For example, the following expression

(-> ((-> (number? number?) number?) (list-of number?)) number?)

corresponds to the following type.
(-> ((-> (number number) number) (list-of number)) number)
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3.1.6 Forall Expressions

The syntax of a forall-exp is as follows.
forall-exp ::= ( forall formals expression )
formals ::= <formals> in the Scheme syntax [R5RS]

A forall-exp is used instead of a lambda to write type predicates transformers that
correspond to polymorphic types (see Section 2.4 [Polymorphic Types], page 8). A type
predicate transformer is a procedure that takes type predicates as arguments and returns
a type predicate as its result.

Each standard formal T in the list of formals has type (type-predicate-for T). The
expression that forms the body of the forall expression must have a type that matches
(type-predicate-for S), for some type S. (Usually, S will depend on T.)

For example, we could write the type predicate transformer double-list-of as follows.
(define double-list-of

(forall (T?)
(list-of (list-of T?))))

From this, the type checker will deduce that the type of list-of is the following.
(forall (T) (-> ((type-predicate-for T))

(type-predicate-for (list-of (list-of T)))))

The forall that appears in the type also causes the overall type to be polymorphic,
using a forall in the type (see Section 2.4 [Polymorphic Types], page 8). This explains
the name of the expression.

In execution, a forall-exp of the form (forall formals exp) is equivalent to (lambda
formals exp). The reason to not use the equivalent lambda is to tell the the type checker
that one is defining a type predicate transformer for a polymorphic type, as described above.

Note, however, that a type predicate transformer is not itself a type predicate; it is a
procedure that returns a type predicate when given type predicates as arguments. Hence,
one cannot, for example, use a forall-exp as a type predicate in a define-datatype declara-
tion (see Section 3.2.2 [Define-Datatype Definitions], page 18). For example, the following
will cause a run-time error when used:

(define-datatype poly-set poly-set?
(empty)
(comprehension
(predicate (forall (T?) (-> (T?) boolean?))))) ; wrong!

The problem will surface when trying to build an object of this type using the
comprehension constructor. For example, the following will cause a run-time error.

(cases poly-set (comprehension null?)
(empty #f)
(comprehension (predicate) (predicate ’())))

One way to make this example work is to use the following instead.
(define-datatype poly-set poly-set?

(empty)
(comprehension
(predicate (-> (datum?) boolean?))))
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3.2 Definitions Added To Scheme

The type checker adds the following kinds of definitions to Scheme. These are explained
in the subsections below.

definition ::= deftype
| define-datatype
| a standard Scheme <definition> from [R5RS]

These are explained below.

3.2.1 Deftype

The syntax of a deftype is given below. See Chapter 2 [Notation for Type Expressions],
page 3, for the syntax of type-exp.

deftype ::= ( deftype name type-exp )
name ::= identifier

A deftype is used to define the type of a name. It can be used anywhere a Scheme
definition can be used. The type checker will issue an error message if the type inferred for
the name does not match the type given.

For example, one might write the following to define the type of the procedure remove-
first.

(deftype remove-first (forall (T) (-> (T (list-of T)) (list-of T))))

One can also use a deftype to define the type of a variable that is not a procedure. For
example, the following declares that e has type number.

(deftype e number)

3.2.2 Define-Datatype Definitions

The define-datatype definition form is found in the second edition of Essentials of
Programming Languages [Friedman-Wand-Haynes01]. The syntax for a define-datatype,
adapted from page 44 is given below. The notation { X }* means zero or more repetitions
of X, and { X }+ means one or more repetitions of X. Recall that a type-name, variant-name,
and field-name are each Scheme symbols (see Section 3.1.1 [Cases Expressions], page 13).

define-datatype ::= ( define-datatype type-name type-predicate-name
{ ( variant-name { field-pred-binding }* ) }+ )

field-pred-binding ::= ( field-name predicate-exp )
type-predicate-name ::= identifier
predicate-exp ::= expression

The type checker can only deal with predicate-exps that have a type of the form (type-
predicate-for S) for some type S. See Section 2.7 [Type Predicate Types], page 12,
for an explanation of these types. All of the standard type predicates, such as number?,
symbol?, and several that we supply with the type checker, such as datum?, have such
types. Another way to produce such a type is to apply a type predicate transformer, such
as list-of, vector-of, pair-of, or -> to known type predicates. Thus the following are
all predicate-exps that can be understood by the type checker; they are listed with their
corresponding types.
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Built-in type predicates and corresponding types

Type predicate Corresponding type expression
-------------------------------------------------------------
boolean? boolean
number? number
datum? datum
(list-of string?) (list-of string)
(list-of (list-of string?)) (list-of (list-of string))
(vector-of number?) (vector-of number)
(pair-of char? char?) (pair-of char char)
(-> (char?) char?) (-> (char) char)
(-> (char? ...) char?) (-> (char ...) char)

However, an expression such as (if #t number? boolean?) does not have such a type.
The type checker rejects such predicate expressions, because it does not know how to extract
the corresponding type information from them. When this happens, one can fall back to
using a type predicate such as datum?.

A define-datatype declaration declares a variant record type, a new known type predi-
cate, and the types of the procedures for constructing the variants. It also provides infor-
mation needed to type check a cases-exp (see Section 3.1.1 [Cases Expressions], page 13)
that is used with that type.

For example, the following definition
(define-datatype person person?

(student (name string?) (major string?))
(professor (name string?) (office number?)))

has the effect of the following deftype definitions.
(deftype person? (type-predicate-for person))
(deftype student (-> (string string) person))
(deftype professor (-> (string number) person))
(deftype person

(variant-record
(student (name string) (major string))
(professor (name string) (office number))))

For example, the following expressions are both of type person

(student "Alyssa P. Hacker" "Computing")
(professor "Daniel P. Friedman" 3021)

In addition, the following expressions will both return #t.
(person? (student "Mitchell Wand" "Computer Science"))
(person? (professor "Christopher T. Haynes" 3033))

Furthermore, the following expression will return "Hal Abelson" (see Section 3.1.1 [Cases
Expressions], page 13).

(let ((mit-prof (professor "Hal Abelson" 507)))
(cases person mit-prof

(professor (name salary) name))
(student (name major) name))
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Finally, in this example person becomes a known type, and person? a known type
predicate, which can thus be used in making other simple type predicates.

3.3 Top-level Forms Added To Scheme

The type checker adds the following top-level forms to Scheme. See the Revised(5)
Report on Scheme [R5RS] for the syntax of Scheme’s command and syntax-definition. See
Section 3.2 [Definitions Added To Scheme], page 18, for the syntax of definition. The other
forms of command-or-definition are explained in the subsections below.

command-or-definition ::= module
| require
| command
| definition
| syntax-definition
| ( begin { command-or-definition }+ )

3.3.1 Module

The syntax of a module that follows is based on the modules in MzScheme (see Section 5
of the PLT MzScheme: Language Manual [Flatt05]). It is much more restrictive, in that only
one provide form is allowed, and it must come right after the initial-required-module-name,
and there can only at most one require form, which must follow some optional deftypes and
at most one require-for-syntax as shown below.

module ::= ( module identifier
initial-required-module-name
provide
{ deftype }*
require-for-syntax-opt
require-opt
defrep-opt
{ definition }* )

initial-required-module-name ::= module-name
module-name ::= identifier

| unix-relative-path-string
| ( file path-string )
| ( lib filename-string { collection-string }* )

unix-relative-path-string ::= string
path-string ::= string
filename-string ::= string
collection-string ::= string
defrep-opt ::= | defrep
require-for-sytnax-opt ::= | require-for-syntax
require-opt ::= | require

Another difference from MzScheme, is that the above syntax does not allow Scheme
commands at the top-level of a module body. This allows translation into other Scheme
dialects, like Chez Scheme, that do not allow commands in the body of a module.

The meaning of a module is as in MzScheme [Flatt05]. In essence a module defines a
scope for names (and syntax), and hides all names (and syntax) that it does not export
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explicitly. Names can be exported using the provide syntax (see Section 3.3.2 [Provide],
page 21). Typically one would write deftypes for each of these names (see Section 3.2.1
[Deftype], page 18) following the provide.

One uses a module by making use of the require special form (see Section 3.3.3 [Require],
page 22). If a file contains a module, just loading it, with load, merely brings that module
as a namespace into Scheme, and does not open it up so that its exports can be used. To
open up a module so that its exports can be used, you must use the require special form
(see Section 3.3.3 [Require], page 22).

A module may use defrep to declare the representation for one or more abstract datatypes
(see Section 3.3.5 [Defrep], page 23).

The initial-required-module-name must be (lib "typedscm.ss" "typedscm") (or, in
theory, typedscm if that is already loaded), but could name some other language dialect.
Our type checker currently ignores this name, effectively assuming that it is typedscm,
however, the MzScheme runtime interprets this, and so it is important that your modules
have an initial-required-module-name of the form (lib "typedscm.ss" "typedscm"). That
is, each module written in the Typedscm dialect should start as follows.

(module my-module (lib "typedscm.ss" "typedscm")
;; ...

)

3.3.2 Provide

The syntax of provide is as follows.
provide ::= ( provide { identifier }* )

A provide form allows one to declare which names declared in a module are visible to
client code when the module is required (see Section 3.3.3 [Require], page 22). A provide
form can only appear in a module declaration (see Section 3.3.1 [Module], page 20).

Each module must contain a single provide form, which lists the names (and syntax)
exported to clients that require the module. All other names (and syntax) definitions in
the file are hidden in the module and cannot be seen by clients that require the module.
This allows information hiding, both about procedures and data structures.

For example, the following defines a module fib-mod that exports the procedure fib,
but hides the helping procedure fib-iter.

(module fib-mod (lib "typedscm.ss" "typedscm")

(provide fib)

(deftype fib (-> (number) number))
(define fib

(lambda (n)
(if (zero? n)

0
(fib-iter n 0 1))))

(deftype fib-iter (-> (number number number) number))
(define fib-iter
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(lambda (n prev last)
(if (< n 2)

last
(fib-iter (- n 1) last (+ prev last)))))

)

3.3.3 Require

The syntax of require is as follows. See Section 3.3.1 [Module], page 20, for the syntax
of module-name.

require ::= ( require { require-spec }+ )
require-spec ::= module-name

A require form allows one to import the names (and syntax) defined by one or more
modules into a scope. A require form can appear either at the top-level in a program (see
Section 3.3 [Top-level Forms Added To Scheme], page 20) or in a module (see Section 3.3.1
[Module], page 20).

A module can contain at most one require form, which lists the modules to be imported.
At the point of the require, the names (and syntax) defined by each module-id are made
available in the scope. For details on the semantics, see Section 5 of the PLT MzScheme:
Language Manual [Flatt05].

For example, the following defines a module fib2-mod that imports the fib-mod de-
fined above (see Section 3.3.2 [Provide], page 21), assuming that fib-mod is contained in a
collection named lib342 and a file named ‘fib-mod.scm’.

(module fib2-mod (lib "typedscm.ss" "typedscm")

(provide fib2 fib)
(require (lib "fib-mod.scm" "lib342"))

(deftype fib (-> (number) number))
(define fib2
(lambda (n)
(fib (fib n))))

)

3.3.4 Require-for-syntax

The syntax of require-for-syntax is as follows. See Section 3.3.3 [Require], page 22, for
the syntax of require-spec.

require-for-syntax ::= ( require-for-syntax { require-spec }+ )

A require-for-syntax form allows one to import names (and syntax) defined by one or
more modules into a module’s transformer environment. A require-for-syntax form can only
appear in a module declaration (see Section 3.3.1 [Module], page 20).

A module can contain at most one require-for-syntax form, which lists the modules
to be imported. Bindings imported as a result of require-for-syntax are made available
during expansion time in MzScheme. For details on the semantics, see Section 12 of the
PLT MzScheme: Language Manual [Flatt05].
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The type checker essentially ignores the required-for-syntax form, as bindings imported
by it do not impact the type environment of the module. This syntax is allowed primarly so
that define-syntax within a module can function properly in the MzScheme environment.
Most users can safely ignore this feature.

3.3.5 Defrep

The syntax of a defrep is as follows. See Section 2.4 [Polymorphic Types], page 8, for
the syntax of type-formals.

defrep ::= ( defrep { abs-conc-pair }* )
abs-conc-pair ::= ( abstract-type-exp representation-type-exp )

| ( forall type-formals abstract-type-exp representation-type-exp )
abstract-type-exp ::= monomorphic-type
representation-type-exp ::= monomorphic-type

A defrep form is used to declare the correspondence between abstract data types (ADT)
and their concrete representation types [Liskov-Guttag86] [Jenkins-Leavens96]. A defrep
form can only appear immediately after the provide in a module definition (see Section 3.3.1
[Module], page 20).

The abstract-type-exps in a defrep form should be a basic type or an applied type. If
a basic type is used, it cannot be a type variable.

For example, the defrep form in the following example, says that the ADT ratl is
represented by the type (list-of number). The deftype declarations present the client’s
view of the ADT’s operations.

(module ratl (lib "typedscm.ss" "typedscm")

(provide make-ratl numr denr)

(deftype make-ratl (-> (number number) ratl))
(deftype numr (-> (ratl) number))
(deftype denr (-> (ratl) number))

(defrep (ratl (list-of number)))

;; the following is from p. 91 of [Springer-Friedman89]

(define make-ratl
(lambda (int1 int2)
(if (zero? int2)

(error "make-ratl: The denominator cannot be zero.")
(list int1 int2))))

(define numr
(lambda (rtl)
(car rtl)))

(define denr
(lambda (rtl)
(cadr rtl)))
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)

Without the defrep form, the type checker would infer that the type of the procedure
make-ratl is as follows,

(-> (number number) (list-of number))

which would not match the type declared with the deftype in the above example.
(-> (number number) ratl)

However, with the defrep form, the type checker matches the inferred type of the proce-
dure against a concrete version of the declared type. This concrete version is formed by
substituting the representation type for each occurrence of the abstract type. Thus the
concrete version of the declared type (-> (number number) ratl) is (-> (number number)
(list-of number)), and so the inferred type and this concrete version of the declared type
match.

The second form of defrep, with a forall and type-formals is used to relate polymorphic
types. For example, one might write the following to say that a set of some type, T is
represented by a list of T objects.

(defrep (forall (T) (set-of T) (list-of T)))

When using the defrep form, one must also provide suitable deftype declarations (see
Section 3.2.1 [Deftype], page 18) for the operations of the ADT, or the defrep form will
have no effect.

In summary, the type checker uses a defrep form to check the concrete types of an ADT
implementation against the client-visible types declared using deftype.
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4 Type Checker Commands and Options

The following commands are helpful to regular users of the type checker.
command effect
——————————————————————
(type-check-help) displays helpful information
(type-check-exit) leave the typed interpreter loop
(type-check-and-eval-loop) starts a typed interpreter loop
(type-check-reset-env!) forget all names defined so far
(type-check-eval-even-if-error!) evaluate even if type errors
(type-check-dont-eval-if-error!) don’t eval if type errors

If you have exited the type checker’s read-eval-print loop, you can use
(type-check-and-eval-loop)

to restart it from Scheme.
The following commands are mainly useful for developing the type checker itself.

command effect
——————————————————————
(type-tracing-set! N) set tracing detail level to N
(type-tracing-off!) set tracing detail level to 0
(type-tracing-level) returns the numeric level of tracing detail
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5 Future Work and Conclusions

The define-datatype facility doesn’t support polymorphic variant record types. It
seems necessary to have a separate declaration that would allow one to declare polymor-
phic variant record types, which produces a type predicate transformer instead of a type
predicate.

One can also imagine trying to use more sophisticated type inference algorithms that
can deal with some uses of nested polymorphic types.
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Appendix A Grammar Summary

The following is a summary of the context-free grammar for the type checker. In the
grammar, the notation { X }* means zero or more repetitions of the nonterminal X. The
notation { X }+ means one or more repetitions of the nonterminal X.

A.1 Notation for Type Expressions

type-exp ::= monomorphic-type
| polymorphic-type

monomorphic-type ::= basic-type
| applied-type
| procedure-type
| intersection-type
| variant-record-type
| type-predicate-type

basic-type ::= identifier
identifier ::= an <identifier> in the Scheme syntax [R5RS].
applied-type ::= ( identifier { monomorphic-type }+ )
procedure-type ::= ( -> ( { monomorphic-type }* ) monomorphic-type )

| ( -> ( { monomorphic-type }* monomorphic-type ... ) monomorphic-type )
polymorphic-type ::= ( forall type-formals monomorphic-type )
type-formals ::= ( { type-variable }* )
type-variable ::= identifier
intersection-type ::= ( all-of { monomorphic-type }+ )
variant-record-type ::= ( variant-record { variant }+ )
variant ::= ( identifier { field-type-binding }* )
field-type-binding ::= ( identifier monomorphic-type )
type-predicate-type ::= ( type-predicate-for monomorphic-type )

A.2 Additions to Scheme

expression ::= cases-exp
| has-type-exp
| test-type-exp
| has-type-trusted-exp
| arrow-exp
| forall-exp
| a standard Scheme <expression> from [R5RS]

cases-exp ::= ( cases type-name expression
{ cases-clause }+ )

| ( cases type-name expression
type-name ::= identifier
cases-clause ::= ( variant-name ( { field-name }* ) sequence )
variant-name ::= identifier
field-name ::= identifier
sequence ::= 0 or more <command>s followed by an expression [R5RS]
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has-type-exp ::= ( has-type type-exp expression )
test-type-exp ::= ( test-type expression expression )
has-type-trusted-exp ::= ( has-type-trusted type-exp expression )
arrow-exp ::= ( -> ( { expression }* ) expression )

| ( -> ( { expression }* expression ... ) expression )
forall-exp ::= ( forall formals expression )
formals ::= <formals> in the Scheme syntax [R5RS]
definition ::= deftype

| define-datatype
| a standard Scheme <definition> from [R5RS]

deftype ::= ( deftype name type-exp )
name ::= identifier
define-datatype ::= ( define-datatype type-name type-predicate-name

{ ( variant-name { field-pred-binding }* ) }+ )
field-pred-binding ::= ( field-name predicate-exp )
type-predicate-name ::= identifier
predicate-exp ::= expression
command-or-definition ::= module

| require
| command
| definition
| syntax-definition
| ( begin { command-or-definition }+ )

module ::= ( module identifier
initial-required-module-name
provide
{ deftype }*
require-for-syntax-opt
require-opt
defrep-opt
{ definition }* )

initial-required-module-name ::= module-name
module-name ::= identifier

| unix-relative-path-string
| ( file path-string )
| ( lib filename-string { collection-string }* )

unix-relative-path-string ::= string
path-string ::= string
filename-string ::= string
collection-string ::= string
defrep-opt ::= | defrep
require-for-sytnax-opt ::= | require-for-syntax
require-opt ::= | require
provide ::= ( provide { identifier }* )
require ::= ( require { require-spec }+ )
require-spec ::= module-name
require-for-syntax ::= ( require-for-syntax { require-spec }+ )
defrep ::= ( defrep { abs-conc-pair }* )
abs-conc-pair ::= ( abstract-type-exp representation-type-exp )
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| ( forall type-formals abstract-type-exp representation-type-exp )
abstract-type-exp ::= monomorphic-type
representation-type-exp ::= monomorphic-type
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