
1

Fall, 1997 Name:

. My Section Day and Time :

Com S 342 | Principles of Programming Languages

Test on EOPL Chapters 6.1{3, 7, and a bit of 5

This test has 10 questions and pages numbered 1 through 9.

Reminders

For this test, you can use one (1) page (8.5 by 11 inches, one (1) side, no less than 9pt font) of

notes. No photo-reduction is permitted. These notes are to be handed in at the end of the test.

Use of other notes or failure to follow these instructions will be considered cheating.

During the test, if you need more space for an answer, use the back of a page. Note when you

do that on the front.

This test is timed. We will not grade your test if you try to take more than the time allowed.

Therefore, before you begin, please take a moment to look over the entire test so that you can

budget your time.

For programs, indentation is important to us for \clarity" points; if your code is sloppy or hard

to read, you will lose points. We will take o� a small amount if you do not give TYPE comments

for recursive helping procedures. However, you do not have to write such comments for procedures

for which the type is stated in the problem. Correct syntax also matters. Check your code over for

syntax errors. You will lose points if your code has syntax errors.

Subset of Scheme You May Use

Unless otherwise stated in a problem, when solving problems you may only use standard ADTs

used in the interpreter (such as cells, environments, etc.), standard features of Scheme that we

discussed in class, define-record, variant-case, and helping functions that you de�ne yourself.

The standard is de�ned by the Revised4 Report on the Algorithmic Language Scheme.

Parts of Scheme You May *Not* Use

Unless otherwise stated in a problem, you are prohibited from de�ning your own macros, and

from using internal de�nes, all the input and output facilities, and the following keywords and

procedures. (Don't worry if you don't know what these are.)

call-with-current-continuation do



2

1. (5 points) In the the de�ned language with objects and classes (the interpreter of section

7.1), what parameter passing mechanism is used to call methods?

2. (10 points) Brie
y describe how a closure is like an object.

3. (5 points) What is a meta-class?

4. (5 points) What is the default parameter passing mechanism used in Scheme and Java?

5. (5 points) What is the array model used in Scheme and Java?



3

6. (15 points) Brie
y explain the following in English. Assuming the indirect model of arrays,

what changes are made in the (chapter 6) interpreter when changing from call-by-value to

call-by-reference?

7. (10 points) Consider the following expression in the de�ned language.

letrecproc

fact(x) = if zero(x) then 1 else *(x, fact(-(x,1)))

in fact(12)

Write, in the de�ned language's concrete syntax, an equivalent desugared form of the above

expression, which does not use letrecproc or letrec. (You may use let in the desugared

form.)



4

8. (30 points) In this problem you will implement the following syntax in the de�ned language.

hexpi ::= foreach hvari in hexpi do hbodyi
hbodyi ::= hexpi

Use the following for the abstract syntax of a foreach-expression.

(define-record foreach (var list-exp body))

The meaning of this syntax is that, if hexpi evaluates to a list, then hbodyi is evaluated (for

its side-e�ects) for each element of the list, with hvari bound to a cell containing each

successive element of the list. The evaluation starts with the element in the head of the list,

if any, and continues to the other end of the list. The value returned by a foreach

expression is 0.

The hexpi should only be evaluated once. The region of the hvari declared in the foreach

expression is just the hbodyi of that expression. (For this problem, assume static scoping,

call-by-value, and the indirect model.)

For example the following expression would return 10.

let total = 0

in begin

foreach elem in list(0,1,2,3,4) do total := +(total, elem);

total

end

As another example, suppose hexpi evaluates to the list (5 9 3 1). Then the interpreter is

to bind the hvari to a cell containing 5 and evaluate hbodyi. After this �nishes, the
interpreter binds the hvari to a cell containing 9 and evaluates hbodyi again. It continues by
evaluating the hbodyi in an environment with the hvari bound to a cell containing 3 and

then to 1.

To save time (on this test) you may assume that the hexpi evaluates to a list; that is you

don't have to check for type errors.

Your task is to implement the above syntax, by �lling in the code for the foreach case of

eval-exp on the next page.



5

To save time, only give the code for the foreach case, and any auxiliary procedures that

you call in that case. However, you don't have to rewrite the procedures for the

environment ADT.

(define eval-exp

; TYPE: (-> (parsed-exp Environment) Expressed-Value)

(lambda (exp env)

(variant-case exp

(lit (datum) datum)

(varref (var) (cell-ref (apply-env env var)))

; ...

; put your code below



6

9. (15 points) Assuming static scoping, consider the following session with the de�ned

language interpreter's read-eval-print loop

--> define i = 342;

--> define lst = emptylist;

--> define f = proc(x,l) begin x := +(8,i); l := cons(i, cons(x, lst)) end;

--> f(i, lst);

Fill in the following table with the �nal values of i and lst after running the above session,

in each of the given parameter mechanisms. (If need be, you may use \?" to represent an

unde�ned (i.e., unspeci�ed) value.)

ending value of

calling mechanism i lst

call-by-value

call-by-reference

call-by-value-result



7

10. (60 points) This is a problem about parameter passing mechanisms and array models.

Throughout this problem use static scoping. Consider the following expression.

letarray a[2]; b[2]

in begin

a[0] := 3; a[1] := 6; b[0] := 9; b[1] := 12;

let i = 0; j = 1

in let g = proc(t, k, u, u0, y0, m, n, y, x)

begin

k := +(k,t); j := -(m,i);

u0 := +(a[m], n); y := a; x[0] := b[k];

%%% draw a picture for this point

+(u0,u[0])

end

in let r = g(1, i, a, a[i], b[0], j, j, b, a)

in

list(a[0], a[1], b[0], b[1], i, j, r)

end

For each of the following combinations of parameter passing mechanism and array model:

(i) draw a picture of the execution (as discussed in class) for the point noted by the

comment, and (ii) give the result of the expression. The combinations you are to do are as

follows (there are more on the following pages).

(a) Call-by-value with the direct model.



8

Here is another copy of the expression, for your convenience.

letarray a[2]; b[2]

in begin

a[0] := 3; a[1] := 6; b[0] := 9; b[1] := 12;

let i = 0; j = 1

in let g = proc(t, k, u, u0, y0, m, n, y, x)

begin

k := +(k,t); j := -(m,i);

u0 := +(a[m], n); y := a; x[0] := b[k];

%%% draw a picture for this point

+(u0,u[0])

end

in let r = g(1, i, a, a[i], b[0], j, j, b, a)

in

list(a[0], a[1], b[0], b[1], i, j, r)

end

(b) Call-by-value with the indirect model.



9

Here is another copy of the expression, for your convenience.

letarray a[2]; b[2]

in begin

a[0] := 3; a[1] := 6; b[0] := 9; b[1] := 12;

let i = 0; j = 1

in let g = proc(t, k, u, u0, y0, m, n, y, x)

begin

k := +(k,t); j := -(m,i);

u0 := +(a[m], n); y := a; x[0] := b[k];

%%% draw a picture for this point

+(u0,u[0])

end

in let r = g(1, i, a, a[i], b[0], j, j, b, a)

in

list(a[0], a[1], b[0], b[1], i, j, r)

end

(c) Call-by-reference with the direct model


