
1

Fall, 1997 Name:

. My Section Time :

Com S 342 | Principles of Programming Languages

Test on EOPL Chapters 1 to 2.2

This test has 6 questions and pages numbered 1 through 6.

Reminders

This test is closed book and notes.

If you need more space, use the back of a page. Note when you do that on the front.

This test is timed. We will not grade your test if you try to take more than the time allowed.

Therefore, before you begin, please take a moment to look over the entire test so that you can

budget your time.

For programs, indentation is important to us for \clarity" points; if your code is sloppy or hard

to read, you will lose points. We may take o� a small amount if you do not give TYPE comments

for recursive helping procedures. However, you do not have to write such comments for procedures

for which the type is stated in the problem. Correct syntax also matters. Check your code over for

syntax errors. You will lose points if your code has syntax errors.

Subset of Scheme You May Use

Unless otherwise stated, when de�ning procedures you may only use: helping procedures that you

de�ne yourself, comments, and the procedures and keywords that are included in the following

list. (That is, on this test do not use Scheme procedures and keywords that are absent from the

following list.) The notation c...r means caar, cadr, cddr, cdar, caaar, etc. You may only use

define at the top level.

', #t, #f, *, +, -, /, <, <=, =, >=, >,

and, andmap, append, apply, boolean?, car, cdr, c...r, char?,

cond, cons, define, display, else, eq?, equal?, eqv?, error,

if, let, letrec, lambda, list, length, list?, map, newline,

not, null?, number?, or, pair?, procedure?, quote, string,

string?, string=?, string-append, string-ci=?, string-length,

string-ref, string->list, string->number, string->symbol,

substring, symbol?, vector, vector?, vector-length,

vector->list, vector-ref, zero?

2

1. (10 points) Consider the following grammar.

hbexpi ::= hatomici
j (8 hvari : hbexpi : hbexpi)

j hbexpi hlopi hbexpi
j (hbexpi)

hatomici ::= P j Q j R j f . hvari
hlopi ::= ^ j _ j)
hvari ::= i j j j x j y j z

In each of the spaces provided (\ ") below, write \yes" if the text is an example of a

hbexpi in the above grammar, and \no" if it is not.

(a) x = 3

(b) f . x _ P

(c) (8 x : x = 3 : f . x)

(d) (8 x : f . x : P ^ f . i)

(e) P _ (8 y : Q : f . x) (R))

2. (5 points) Using Scheme, write a de�nition for a curried procedure that is a version of the

following. (Don't ask us what a \curried procedure" means, you're supposed to know that.)

(define dielectric-force

; TYPE: (-> (number number number) number)

(lambda (e1 r e2)

(/ (* E e1 (- e2))

(* r r))))

3

3. (20 points) Write a procedure, append-all, with type

(-> ((list (list T))) (list T))

that takes a list of lists, and returns a list of all these lists appended together in the same

order. In your code you may only use Scheme's append with two (2) arguments. The

following are examples.

(append-all '())

==> ()

(append-all '((3 7 10) (20 25 30) (5 4 3)))

==> (3 7 10 20 25 30 5 4 3)

(append-all '((20 25 30) (5 4 3)))

==> (20 25 30 5 4 3)

(append-all '((l i k) (e) (t h i s) () (o k)))

==> (l i k e t h i s o k)

4. (10 points) Write a Scheme procedure append* with the type

(-> ((list T) ...) (list T))

that takes 0 or more argument lists and returns a list of all these argument lists appended

together in the same order. In your code you may only use Scheme's append with two (2)

arguments; you may use the append-all procedure if you wish as well. The following are

examples.

(append*)

==> ()

(append* '(3 7 10) '(20 25 30) '(5 4 3))

==> (3 7 10 20 25 30 5 4 3)

(append* '(20 25 30) '(5 4 3))

==> (20 25 30 5 4 3)

(append* '(l i k) '(e) '(t h i s) '() '(o k))

==> (l i k e t h i s o k)

4

5. (20 points) Without using vector->list, write a procedure, vector-same?, which has the

following type.

(-> ((vector symbol)) boolean)

The procedure vector-same? takes a vector of symbols vos, and returns #t just when each

of the symbols in vos is the same. You may assume that vos has at least one element. The

following are examples.

(vector-same? '#(ok)) ==> #t

(vector-same? '#(yeah yeah)) ==> #t

(vector-same? '#(what is the most important idea in real estate)) ==> #f

(vector-same? '#(location location location)) ==> #t

(vector-same? '#(and and in and in computers)) ==> #f

(vector-same? '#(think think think)) ==> #t

5

6. (30 points) Consider the following grammar.

hexpi ::= hnumberi j hvarrefi
j (print hexpi)
j (hexpi - hexpi) j (hexpi / hexpi)

hvarrefi ::= hsymboli

In this grammar, the nonterminals hnumberi, hstringi, and hsymboli have the same syntax

as in Scheme. Write a procedure, subst-exp, with the following type

(-> (symbol symbol exp) exp)

that takes two symbols new and old, and an hexpi, e, and returns an hexpi that is the same

as e, except that each hvarrefi in e that is the same as old is replaced by the value of new.

The following are examples.

(subst-exp 'new 'old 3) ==> 3

(subst-exp 'z 'x 'x) ==> z

(subst-exp 'z 'x 'y) ==> y

(subst-exp 'z 'x '(x - x)) ==> (z - z)

(subst-exp 'z 'x '((x - x) - (3 / x))) ==> ((z - z) - (3 / z))

(subst-exp 'z 'x '(print (3 - (y / x)))) ==> (print (3 - (y / z)))

(subst-exp 'total 't '((t / 0.34) - (x - 5))) ==> ((total / 0.34) - (x - 5))

(subst-exp '+ '- '(x - x)) ==> (x - x)

(subst-exp 'f 'print '(print 5)) ==> (print 5)

Hint: don't hesitate to write helping procedures. There is more space on the next page.

6

