Com S 342 Name:
Fall 2001 TA (or Section):

Principles of Programming Languages

Exam 4 on Interpreters and Language Semantics

This test has 8 questions and pages numbered 1 through 9.

Reminders

For this test, you can use one (1) page (8.5 by 11 inches, one (1) side, no less than 9pt font) of
notes. Handwriting is okay. No photo-reduction is permitted. Don’t use anything with printing on
the other side, please. These notes are to be handed in at the end of the test. Have your name in
the top right corner. Use of other notes or failure to follow these instructions will be considered
cheating.

If you need more space, use the back of a page. Note when you do that on the front.

This test is timed. We will not grade your test if you try to take more than the time allowed.
Therefore, before you begin, please take a moment to look over the entire test so that you can
budget your time.

For programs, indentation is important to us for “clarity” points; if your code is sloppy or hard
to read, you will lose points. Correct syntax also matters. Check your code over for syntax errors.
You will lose points if your code has syntax errors.

You can use helping procedures whenever you like. If you write recursive helping procedures,
please give a deftype declaration for them.

This page just contains reference material for problems on later pages.
Types of helpers from the chapter 3 interpreters used on this test. These ADTs correspond
roughly to those in section 3.7 of the text.

eopl:error : (-> (symbol string datum ...) poof)

;3 ———— ProcVal (procedure values) ADT --------

procval? : (type-predicate-for procval)

closure : (-> ((list-of symbol) expression environment) procval)
apply-procval : (-> (procval (list-of Expressed-Value)) Expressed-Value)

;3 ———— Expressed-Value ADT ---——----

;3 upcasts

number->expressed : (-> (number) Expressed-Value)
procval->expressed : (-> (Procval) Expressed-Value)
list->expressed : (-> ((list-of Expressed-Value)) Expressed-Value)
;; downcasts

expressed->number : (-> (Expressed-Value) number)
expressed->procval : (-> (Expressed-Value) Procval)
expressed->list : (-> (Expressed-Value) (list-of Expressed-Value))

;3 ———— reference ADT ————-——-

a-ref : (forall (T) (-> (number (vector-of T)) (ref-of T)))
deref : (forall (T) (-> ((ref-of T)) T))

setref! : (forall (T) (-> ((ref-of T) T) wvoid))

;; ———-—- environment ADT ---—-———-—-
;3 type predicate
environment? : (type-predicate-for environment)
;; constructors
empty-env : (-> () environment)
extend-env : (-> ((list-of symbol) (list-of Expressed-Value) environment)
environment)
extend-env-recursively : (-> ((list-of symbol) (list-of (list-of symbol))
(list-of expression) environment)
environment)
;; observers
apply-env : (-> (environment symbol) Expressed-Value)
apply-env-ref : (-> (environment symbol) (ref-of Expressed-Value))
defined-in-env? : (-> (environment symbol) boolean)

1. (5 points) Complete the following definition of the defined language interpreter’s init-env
procedure so that it defines the name five to be the number 5. (You don’t have to worry
about the values of any names other than five.) Once this is done, in the defined language
we would have the following examples:

--> five

5

-—> +(five, five)
10

Your code must type check to receive full credit. Hint: look at the operations of the
standard ADT's on page 2.

(deftype init-env (-> () environment))
(define init-env
(lambda ()

2. (5 points) This is a question about local binding in the defined language. In this problem,
the defined language is extended with lists, so that 1ist(1,2,3) returns the list (1 2 3).
What is the result of the following expression?

let x = 3
y =4
in list(list(x, y),
let x =y

y =X
in list(x, y),
list(x, y))

. (10 points) This is a question about the implementation of let expressions. Suppose we
changed the interpreter to have a global variable, the-env, which was initialized to the
value of (init-env). And suppose that the-env was not passed to eval-expression as an
argument, but that each let expression extended the-env as a side effect. That is suppose
the interpreter was written as follows:

(deftype the-env environment)
(define the-env (init-env))

(deftype eval-expression (-> (expression) Expressed-Value))
(define eval-expression

(lambda (exp)
(cases expression exp
(1it-exp (datum) (number->expressed datum))
(var-exp (id) (apply-env the-env id))
(primapp-exp (prim rands)
(let ((args (eval-rands rands)))
(apply-primitive prim args)))
(let-exp (ids rands body)
(let ((args (eval-rands rands)))
(begin
(set! the-env (extend-env ids args the-env))
(eval-expression body)))))))

(deftype eval-rands (-> ((list-of expression)) (list-of Expressed-Value)))
(define eval-rands

(lambda (exps)
(if (null? exps)
>0
(let ((first-ans (eval-expression (car exps))))
(cons first-ans (eval-rands (cdr exps)))))))

(a) What would the defined language code in problem 2 (p. 3) return with this interpreter?

(b) Briefly explain why this interpreter’s implementation of let expressions does not

correctly implement the usual semantics for let expressions. (That is, what’s wrong
with its behavior?)

4. (10 points) Consider an interpreter for the defined language extended with lists. For this
interpreter your task is to add a new built-in primitive, second. Its semantics is that
second(le) evaluates le, which should be a list, and returns the second element of that list.
(You can assume that the value of le is a list with at least two elements; that is, you don’t
have to write code to check that.) For example, once this is done, in the defined language
we would have the following examples:

-—> second(list(1,2,3))

2

--> +(second(1list(3,4,2,5)), second(1list(80,90)))
94

Your code should type check, but you don’t have to check for the proper number of
arguments to the primitive in the defined language. Hint: look at the operations of the
standard ADTs on page 2.

Please fill in your answer in the appropriate places below. We have already completed the
concrete syntax input for SLLGEN.

(define the-grammar
> ((program (expression) a-program)
;3 ... assume the other parts of the grammar are done
(primitive ("second") second-prim)))

(define-datatype primitive primitive?
;3 ... assume the other primitives are done and add yours below ...

(deftype apply-primitive
(-> (primitive (list-of Expressed-Value)) Expressed-Value))
(define apply-primitive
(lambda (prim args)
(cases primitive prim
;3 ... assume the other primitive cases are done,
;; and add yours below...

5. This is a question about scoping. Consider the following code in the defined language.

let chief =0
maxwell = 86
in let secret = proc() maxwell
in let agent = proc(chief, maxwell) list(chief, maxwell, (secret))

in (agent 5 10)

(a) (5 points) What kind of scoping is the interpreter using if this code returns (5 10 86)7

(b) (5 points) What kind of scoping is the interpreter using if this code returns (5 10 10)?

6. This is a problem about parameter passing mechanisms. Consider the following code,
written in the defined language with static scoping, assignment, and lists.

let x = 3
y =4
in let capture = proc (n, m) begin
set n = subl(x);
set y = -(m,y);
list(n, m, x, y)
end
in let ans = (capture x +(y, 6))
in cons(x, cons(y, ans))

(a) (5 points) What is the result of the above program if call-by-value is used as the
parameter passing mechanism?

(b) (10 points) What is the result of the above program if call-by-reference is used as the
parameter passing mechanism?

7. (20 points) In this problem you will implement the following syntax in the defined language.
(expression) := implies (expression) ==> (expression)
Use the following as the abstract syntax for the implies-expression.
(define-datatype expression expression?
(implies-exp (left-exp expression?) (right-exp expression?)))

The meaning of this syntax is supposed to be that of a short-circuit logical implication
operator. The following are examples in the defined language

--> implies 1 ==> 0

0

--> implies 0 ==> 1

1

--> implies -(2,1) ==>1

1

-=> implies +(0,0) ==> -(2,2)

1

-—> letrec forever() = (forever) in implies 0 ==> (forever)
1

That is, implies e eg is equivalent to if e; then e; else 1. However, you are not to
implement this as a syntactic sugar. That is, do not use if-exp, run, or scan&parse in
your solution. Instead you will implement this in eval-expression directly, by filling in the
code for the implies-exp case of eval-expression below.

To save time, only give the code for the implies-exp case, and any auxiliary procedures
that you call in that case.

(deftype true-value? (-> (Expressed-Value) boolean))
(define true-value?
(lambda (x)
(not (zero? (expressed->number x)))))

(deftype eval-expression (-> (expression environment) Expressed-Value))
(define eval-expression
(lambda (exp env)
(cases expression exp
(1it-exp (datum)
(number->expressed datum))
(var-exp (id)
(apply-env env id))
;; ... assume that the rest of this is done
(implies-exp

8. (25 points) In this problem you will implement a new kind of procedure expression in the
defined language. This new kind of procedure expression has the following syntax:

(expression) ::= varargsproc ((identifier)) (expression)

Its semantics is that its evaluation forms a new kind of procedure closure that remembers
the current environment, e. When called, this new closure extends the remembered
environment, e, by binding the list of its actual parameters to its formal parameter, and
then evaluating the expression in its body in that extended environment. Assume that the
interpreter has already been extended to support lists. So the following are examples.

--> let mklist = varargsproc (x) x
in (mklist 3 4 2 (mklist (mklist (mklist 5) 4) 1))
(342 (((5) 4) 1))
--> let g = varargsproc (x) cons(addi(car(x)), cdr(x))
h = varargsproc (x) car(x)

in list((g 1 10), (g 3 20 30), (g 40), (g (h 3)), (g (b 5 10)), (h (g 1)))

((2 10) (4 20 30) (41) (4) (6) (2))
--> let f = varargsproc (x) varargsproc (y) x

in 1ist(((£)), ((f ((f 3) 4) 56)), ((f 9 10 11 12 13 14 15 16) 17 18))
(O ((3) 56) (9 10 11 12 13 14 15 16))

Your task is to implement the varargsproc expression, by writing code in the appropriate
places below. On this page write your code for the ProcVal ADT. On the following page
write your code to define the abstract syntax and to do evaluation of the new expressions.
(Assume that the rest of the code not indicated is unchanged from the standard
interpreters.) Your code should type check.

(define-datatype procval procval?
(closure (ids (list-of symbol?))
(body expression?)
(env environment?))

(deftype apply-procval
(-> (procval (list-of Expressed-Value)) Expressed-Value))
(define apply-procval
(lambda (proc args)
(cases procval proc ; you must write the case for closure too

Please fill in your code below for the other changes to the interpreter for the problem on the
previous page. We have already completed the concrete syntax input for SLLGEN.

(define the-grammar
> ((program (expression) a-program)
;5 ... assume the other parts of the grammar are done
(expression
("varargsproc" "(" identifier ")" expression)
varargsproc-exp)))

(define-datatype expression expression?
;3 ... assume the other parts are done
(varargsproc-exp

(deftype eval-expression (-> (expression environment) Expressed-Value))
(define eval-expression

(lambda (exp env)
(cases expression exp
(var-exp (id)
(apply-env env id))
(app-exp (rator rands)
(let ((proc (eval-expression rator env))
(args (eval-rands rands env)))
(if (procval? proc)
(apply-procval (expressed->procval proc) args)
(eopl:error ’eval-expression
"Attempt to apply non-procedure ~s" proc))))
;3 ... assume the other parts of this are done
(varargsproc-exp

