
1

Spring, 1999 Name:

My Section Letter: My Section Day and Time :

Com S 342 | Principles of Programming Languages

Test on EOPL Sections 3.6, 4.5{6, and 5.1{5

This test has 7 questions and pages numbered 1 through 11.

Reminders

For this test, you can use one (1) page (8.5 by 11 inches, one (1) side, no less than 9pt font) of

notes. Handwriting is okay. No photo-reduction is permitted. Don't use anything with printing on

the other side, please. These notes are to be handed in at the end of the test. Have your name in

the top right corner. Use of other notes or failure to follow these instructions will be considered

cheating.

During the test, if you need more space for an answer, use the back of a page. Note when you

do that on the front.

This test is timed. We will not grade your test if you try to take more than the time allowed.

Therefore, before you begin, please take a moment to look over the entire test so that you can

budget your time.

For programs, indentation is important to us for \clarity" points; if your code is sloppy or hard

to read, you will lose points. We will take o� a small amount if you do not give TYPE comments

for recursive helping procedures. However, you do not have to write such comments for procedures

for which the type is stated in the problem. Correct syntax also matters. Check your code over for

syntax errors. You will lose points if your code has syntax errors.

Subset of Scheme You May Use.

Unless otherwise stated in a problem, when solving problems you may only use standard ADTs

used in the interpreter (such as cells, environments, etc.), standard features of Scheme that we

discussed in class, define-record, variant-case, and helping functions that you de�ne yourself.

The standard is de�ned by the Revised5 Report on the Algorithmic Language Scheme.

There is a list of the types of some of the procedures from the \standard ADTs" on the next

page.

Parts of Scheme You May *Not* Use.

Unless otherwise stated in a problem, you are prohibited from de�ning your own macros, and

from using internal de�nes, all the input and output facilities, and the following keywords and

procedures. (Don't worry if you don't know what these are.)

call-with-current-continuation do



2

Types of helpers from the \standard ADTs" for chapter 5:

;; Expressed-Value ADT

number->expressed : (-> (number) Expressed-Value)

expressed->number : (-> (Expressed-Value) number)

procedure->expressed : (-> (Procedure) Expressed-Value)

expressed->procedure : (-> (Expressed-Value) Procedure)

list->expressed : (-> ((list Expressed-Value)) Expressed-Value)

expressed->list : (-> (Expressed-Value) (list Expressed-Value))

void->expressed : (-> (void) Expressed-Value)

expressed->denoted : (-> (Expressed-Value) Denoted-Value)

denoted->expressed : (-> (Denoted-Value) Expressed-Value)

;; Denoted-Value ADT

make-cell : (-> (Expressed-Value) Denoted-Value)

cell-ref : (-> (Denoted-Value) Expressed-Value)

cell-set! : (-> (Denoted-Value Expressed-Value) void)

cell-swap! : (-> (Denoted-Value Denoted-Value) void)

;; Procedure ADT

prim-proc? : (-> (Procedure) boolean)

make-prim-proc : (-> (symbol) Procedure)

prim-proc->prim-op : (-> (Procedure) symbol)

closure? : (-> (Procedure) boolean)

make-closure : (-> ((list symbol) parsed-exp Environment) Procedure)

closure->formals : (-> (Procedure) (list symbol))

closure->body : (-> (Procedure) parsed-exp)

closure->env : (-> (Procedure) Environment)

;; from ignore.scm

ignore : (-> (T) void)



3

1. (5 points) Assume for this problem that the de�ned language has been extended with the

top-level form define, and with primitive procedures: less and lessOrEqual, greater and

greaterOrEqual. Write in the de�ned language (not Scheme), a procedure, largest, that

takes four numbers as parameters, and returns the largest of these. (You can use helping

procedures if you wish.)

For example:

largest(7,4,2,9) ==> 9

largest(4,7,9,2) ==> 9

largest(0,0,15,0) ==> 15

largest(15,15,3,15) ==> 15

largest(0,0,0,0) ==> 0

Write your answer by completing the de�ned language code below.

define largest = proc(w, x, y, z)



4

2. (5 points) Briey (in no more than 5 sentences) answer the following question. What

changes were needed to the de�ned language's interpreter to support statically-scoped

procedures (the proc special form)?

3. (10 points) In this problem you will add a primitive procedure tail to the de�ned

language's interpreter. This procedure should return the tail of its argument, assuming that

the argument is a non-empty list. For example tail(list(3,4,5)) would be (4 5). You

do not have to check for errors.

Your task is to add the primitive procedure tail by �lling in the code for the necessary

changes below. Assume that you are given the appropriate procedures for the domain

Expressed-Value, such as expressed->list (see the previous page), but if you need any

other auxiliary procedures for your de�nition, you must also write out those in your solution.

(define apply-prim-op

;; TYPE: (-> (symbol (list Expressed-Value)) Expressed-Value)

(lambda (prim-op args)

(case prim-op

((+) (number->expressed (+ (expressed->number (car args))

(expressed->number (cadr args)))) )

((*) (number->expressed (* (expressed->number (car args))

(expressed->number (cadr args)))) )

((-) (number->expressed (- (expressed->number (car args))

(expressed->number (cadr args)))) )

((add1) (number->expressed (+ (expressed->number (car args)) 1)) )

((sub1) (number->expressed (- (expressed->number (car args)) 1)) )

(else (error "Invalid prim-op name:" prim-op)))))

(define prim-op-names ; TYPE: (list symbol)

'(+ - * add1 sub1

))



5

4. This problem is about mutation and sharing in Scheme.

(a) (5 points) Draw a box and pointer diagram for the state after executing all of the

following top-level Scheme forms.

(define mylist (cons 9 (cons 10 '())))

(define ml2 (cons 8 mylist))

(set-car! mylist 7)

(set-cdr! ml2 (cdr mylist))

(b) (5 points) Continuing from the above, what is the current value of the following

expression?

(list 'mylist-is mylist

'ml2-is ml2)

(c) (5 points) Continuing from the above, what is the value of the following expression?

(You can draw another diagram, but please leave the one for part (a) alone.)

(begin

(set-car! (cdr mylist) 6)

(list 'mylist-is mylist

'ml2-is ml2))



6

5. (20 points) This problem is about transforming procedural to record representations.

One can imagine a potentially in�nite string as a mapping from the natural numbers to

characters. This type will be called i-string below. Consider the following procedural

representation of i-string.

(define i-string-such-that ; TYPE: (-> ((-> (number) char)) i-string)

(lambda (f)

(lambda (n)

(f n))))

(define i-string-update ; TYPE: (-> (i-string number char) i-string)

(lambda (s m c)

(lambda (n)

(if (= m n) c (i-string-access s n)))))

(define i-string-access ; TYPE: (-> (i-string number) char)

(lambda (s n)

(s n)))

Examples aren't really going to help you, but if we de�ne

(define all-a ; TYPE: i-string

(i-string-such-that (lambda (n) #\a)))

(define alphabet ; TYPE: i-string

(i-string-such-that (lambda (n) (integer->char (remainder n 128)))))

then the following are examples of how the above code works:

(i-string-access all-a 0) ==> #\a

(i-string-access all-a 342342342342342342342342) ==> #\a

(i-string-access alphabet 342342342342342342342342) ==> #\F

(i-string-access alphabet 70) ==> #\F

(i-string-access alphabet 71) ==> #\G

(i-string-access alphabet 103) ==> #\g

(i-string-access (i-string-update alphabet 103 #\a) 103) ==> #\a

(i-string-access (i-string-update alphabet 103 #\a) 70) ==> #\F



7

Your task is to transform the procedural representation on the previous page into one that

uses records. Do this by giving the define-record declarations needed and the bodies of

the procedures in the spaces provided on the next page. You must use variant-case in

your solution.

;;; Write the define-record declarations below

;;; Now fill in the code for the operations below

(define i-string-such-that ; TYPE: (-> ((-> (number) char)) i-string)

(define i-string-update ; TYPE: (-> (i-string number char) i-string)

(define i-string-access ; TYPE: (-> (i-string number) char)



8

6. (20 points) In this problem you will implement the following syntax in the de�ned language,

starting from an interpreter that supports assignment (:=) and begin.

hexpi ::= do hbodyi until htest-expi j ...

hbodyi ::= hexpi
htest-expi ::= hexpi

Assume the following is the abstract syntax of a do until expression, where both the body

and the test-exp �elds are of type parsed-exp.

(define-record do-until (body test-exp))

The meaning of this syntax is that, �rst the hbodyi is evaluated (for its side-e�ects), then if

the value of htest-expi is a number that represents true, evaluation ends; otherwise the

evaluation process is repeated. When evaluation ends, the result of the do until expression

is the number 0.

For example the following expression prints 0 then 1 then 2 then 3 and then 4, and then

returns 10.

let total = 0;

i = 0

in

begin

do

begin

total := +(total, i);

print(i);

i := +(i,1)

end

until greater(i, 4);

total

end

Note that htest-expi should be evaluated each time around the loop.

Your task is to implement the above syntax, by �lling in the code for the do-until case of

eval-exp on the next page.



9

To save time, only give the code for the do-until case, and any auxiliary procedures that

you call in that case (if they are not given on page 2).

(define eval-exp

;; TYPE: (-> (parsed-exp Environment) Expressed-Value)

(lambda (exp env)

(variant-case exp

(lit (datum) (number->expressed datum))

(varref (var) (denoted->expressed (apply-env env var)))

;; ...

;; put your code below



10

7. (25 points) In this problem you will implement the following syntax in the de�ned language,

starting from an interpreter that supports assignment (:=) and begin.

hexpi ::= within hbodyi use hdeclsi end j ...

hbodyi ::= hexpi
hdeclsi ::= hdecli f; hdeclig*

Assume that the following is the abstract syntax for the within-use and decl records. In a

within-use record, the �eld body has type parsed-exp and decls has type (list (decl

parsed-exp)).

(define-record within-use (body decls))

(define-record decl (var exp))

The meaning of this syntax is supposed to be that the declarations in the list hdeclsi are
sequentially processed, and then the hbodyi is evaluated in an environment that has the

bindings for all the declarations. The result of the hbodyi is the result of the whole
expression. Sequential processing for declarations means that the expression in the �rst

declaration in the list is evaluated in the original environment, then its binding is added to

the environment used to process the remaining declarations. For example, in the de�ned

language we would have

within x use x = 3 end

==> 3

within list(b,c,d) use a = 1; b = +(a,1); c = +(b,1); d = +(c,1) end

==> (2 3 4)

within list(x,y) use x = 7; y = -(x,2) end

==> (7 5)

within begin x := +(x,y); *(x,y) end use x = 7; y = -(x,2) end

==> 60

let c = 2 in within list(b,c) use a = 1; b = +(c,a); c = +(b,4) end

==> (3 7)

It follows that within b use v1 = e1; v2 = e2; : : : vn = en end is equivalent to the expression

let v1 = e1 in let v2 = e2 in : : : let v
n
= e

n
in b. However, you are not to implement this

as a syntactic sugar. That is, do not use make-let, make-app, or parse in your solution.

Instead you will implement this in eval-exp directly, by �lling in the code for the

within-use case of eval-exp on the next page.



11

To save time, only give the code for the within-use case, and any auxiliary procedures that

you call in that case.

(define eval-exp

;; TYPE: (-> (parsed-exp Environment) Expressed-Value)

(lambda (exp env)

(variant-case exp

(lit (datum) (number->expressed datum))

(varref (var) (denoted->expressed (apply-env env var)))

;; ...

;; put your code below


