
1

Spring, 1999 Name:

My Section Letter: My Section Day and Time :

Com S 342 | Principles of Programming Languages

Test on EOPL Chapters 2.3 and 3

This test has 7 questions and pages numbered 1 through 7.

Reminders

For this test, you can use one (1) page (8.5 by 11 inches, one (1) side, no less than 8pt font) of

notes. No photo-reduction is permitted. These notes are to be handed in at the end of the test.

Use of other notes or failure to follow these instructions will be considered cheating. Please put

your name in the top right corner of your notes.

During the test, if you need more space for an answer, use the back of a page. Note when you

do that on the front.

This test is timed. We will not grade your test if you try to take more than the time allowed.

Therefore, before you begin, please take a moment to look over the entire test so that you can

budget your time.

For programs, indentation is important to us for \clarity" points; if your code is sloppy or hard

to read, you will lose points. We will take o� a small amount if you do not give TYPE comments

for recursive helping procedures. However, you do not have to write such comments for procedures

for which the type is stated in the problem. Correct syntax also matters. Check your code over for

syntax errors. You will lose points if your code has syntax errors.

Subset of Scheme You May Use.

Unless otherwise stated in a problem, when solving problems you may only use standard features of

the language that we discussed in class, define-record, variant-case, and helping functions that

you de�ne yourself. The standard is de�ned by the Revised5 Report on the Algorithmic Language

Scheme.

Parts of Scheme You May *Not* Use.

Unless otherwise stated in a problem, you are prohibited from de�ning your own macros, and

from using internal de�nes, all the input and output facilities, and the following keywords and

procedures. (Don't worry if you don't know what these are.)

call-with-current-continuation do

2

1. (15 points) This is a problem about bound variables. In each of the spaces provided below,

write, in set brackets, the entire set of the bound variables in the corresponding Scheme

expression. For example, write fv; wg, if the bound variables are v and w. If there are no

bound variables, write fg. (You're supposed to know what a \bound variable" is.)

(a) (car (cdr ls))

(b) (lambda (i n ls) (plus n (car ls)))

(c) (let ((avg3 (lambda (f p n) (average (car p) (cdr p) c n)))

(a (car ls))

(b (cadr ls))

(c (caddr ls)))

(avg3 foo b ten))

(d) (letrec ((sing (lambda (ls pitch endval)

(if (null? ls)

endval

(((return-last3 (set-pitch! pitch))

(talk (car ls)))

(sing (cdr ls))))))

(talk (lambda (word) (say word)))

(last (lambda (a) (lambda (b) b)))

(return-last3 (lambda (x) (lambda (y) (lambda (val) val)))))

(sing notes))

3

2. (15 points) This is a problem about free variables. In each of the spaces provided below,

write, in set brackets, the entire set of the free variables in the corresponding Scheme

expression. For example, write fv; wg, if the free variables are v and w. If there are no free

variables, write fg. (You're supposed to know what a \free variable" is.)

Note: these are the same expressions as above.

(a) (car (cdr ls))

(b) (lambda (i n ls) (plus n (car ls)))

(c) (let ((avg3 (lambda (f p n) (average (car p) (cdr p) c n)))

(a (car ls))

(b (cadr ls))

(c (caddr ls)))

(avg3 foo b ten))

(d) (letrec ((sing (lambda (ls pitch endval)

(if (null? ls)

endval

(((return-last3 (set-pitch! pitch))

(talk (car ls)))

(sing (cdr ls))))))

(talk (lambda (word) (say word)))

(last (lambda (a) (lambda (b) b)))

(return-last3 (lambda (x) (lambda (y) (lambda (val) val)))))

(sing notes))

4

3. (5 points) Desugar the following expression by writing a Scheme expression that has the

same meaning, but which does not use let.

(+ a (let ((x (f b c)))

(+ 3 x)))

4. (10 points) In the following expression, draw an arrow from each bound hvarrefi to its
declaration.

(lambda (f g h)

((lambda (x)

(lambda (z x)

(f (g x) z)))

(lambda (x ls f)

(lambda (g)

(g (f x ls))))))

5. (10 points) Give the lexical address form of the above expression, by �lling in the blanks

below. (You are supposed to know what the \lexical address form" of an expression is.)

(lambda (f g h)

((lambda (x)

(lambda (z x)

(lambda (x ls f)

(lambda (g)

5

6. (20 points) Suppose a picture (e.g., a JPEG image) is represented in Scheme as a vector of

pixels, where each pixel is a number. Without using vector->list, write a procedure,

picture-similar? : (-> ((vector number) (vector number)) boolean)

that takes two such vectors, pic1 and pic2, and returns true if the two vectors have the

same length, and if the absolute value of the di�erence between the nth number in pic1 and

the nth number in pic2 is strictly less than 5.

The following are examples.

(picture-similar? (vector 0 0 0) (vector 0 3 4)) ==> #t

(picture-similar? (vector 0 0 0) (vector 0 3 4 0 5 6)) ==> #f

(picture-similar? '#(1 2 3 4 5 6 7 9) '#(0 1 2 3 4 5 6 8)) ==> #t

(picture-similar? '#(6 7 8 9 10 11 12 21) '#(0 1 2 3 4 5 6 8)) ==> #f

(picture-similar? '#(0 5 6) '#(-4 9 6)) ==> #t

(picture-similar? '#(-4 9 6) '#(0 5 6)) ==> #t

(picture-similar? '#() '#()) ==> #t

Hints: remember that Scheme vectors have indexes that start with zero. You can use abs to

compute absolute values, vector-length to get the length of a vector, and vector-ref to

access an element.

6

7. (25 points) Consider the following grammar.

hexpi ::= hvarrefi
j hliti
j (hexpi fhexpig�)

j (if hexpi hexpi hexpi)

j (when hexpi hexpi)

hvarrefi ::= hsymboli
hliti ::= hnumberi

The abstract syntax for this grammar is de�ned by the following records. The variant

record type formed from the union of these record types is called parsed-exp below.

(define-record varref (var))

(define-record lit (datum))

(define-record app (rator rands))

(define-record if (test-exp then-exp else-exp))

(define-record when (test body))

Write a procedure, syntax-expand of type (-> (parsed-exp) parsed-exp) that desugars

when expressions into if expressions. Your procedure is to use the following formula for

desugaring, where E1 and E2 are arbitrary parsed-exps.

#(when E1 E2) ==> #(if E1 E2 #(lit 0))

There are some examples on the next page.

7

The following are examples for the problem on the previous page.

(syntax-expand (make-when (make-varref 'x) (make-varref 'y)))

= (make-if (make-varref 'x) (make-varref 'y) (make-lit 0))

==> #(if #(varref x) #(varref y) #(lit 0))

(syntax-expand (make-varref 'x))

= (make-varref 'x)

==> #(varref x)

(syntax-expand (make-app (make-varref 'h)

(list (make-when (make-varref 'b) (make-lit 5))

(make-varref 'a))))

= (make-app (make-varref 'h)

(list (make-if (make-varref 'b) (make-lit 5) (make-lit 0))

(make-varref 'a)))

==> #(app #(varref h)

(#(if #(varref b) #(lit 5) #(lit 0))

#(varref a)))

(syntax-expand (make-if (make-varref 'g)

(make-when (make-varref 'a)

(make-when (make-varref 'b) (make-varref 'c)))

(make-app (make-varref 'f)

(list (make-when (make-varref 'y) (make-lit 4))))))

= (make-if (make-varref 'g)

(make-if (make-varref 'a)

(make-if (make-varref 'b) (make-varref 'c) (make-lit 0))

(make-lit 0))

(make-app (make-varref 'f)

(list (make-if (make-varref 'y)

(make-lit 4)

(make-lit 0)))))

==> #(if #(varref g)

#(if #(varref a)

#(if #(varref b) #(varref c) #(lit 0))

#(lit 0))

#(app #(varref f)

(#(if #(varref y)

#(lit 4)

#(lit 0)))))

