
1

Spring, 1996 Name:

. My Section Day and Time :

Com S 342 | Principles of Programming Languages

Test on EOPL Chapters 5.1{5

This test has 7 questions and pages numbered 1 through 7.

Reminders

For this test, you can use one (1) page (8.5 by 11 inches, one (1) side, no less than 8pt font) of

notes. No photo-reduction is permitted. These notes are to be handed in at the end of the test.

Use of other notes or failure to follow these instructions will be considered cheating.

If you need more space, use the back of a page. Note when you do that on the front.

This test is timed. We will not grade your test if you try to take more than the time allowed.

Therefore, before you begin, please take a moment to look over the entire test so that you can

budget your time.

For programs, indentation is important to us for \clarity" points; if your code is sloppy or hard

to read, you will lose points. We will take o� a small amount if you do not give TYPE comments

for recursive helping procedures. However, you do not have to write such comments for procedures

for which the type is stated in the problem. Correct syntax also matters. Check your code over for

syntax errors. You will lose points if your code has syntax errors.

Subset of Scheme You May Use

Unless otherwise stated in a problem, when solving problems you may only use standard ADTs

used in the interpreter (such as cells, environments, etc.), standard features of Scheme that we

discussed in class, define-record, variant-case, and helping functions that you de�ne yourself.

The standard is de�ned by the Revised4 Report on the Algorithmic Language Scheme.

Parts of Scheme You May *Not* Use

Unless otherwise stated in a problem, you are prohibited from de�ning your own macros, and

from using internal de�nes, all the input and output facilities, and the following keywords and

procedures. (Don't worry if you don't know what these are.)

call-with-current-continuation do

2

1. (10 points) In this problem you will add a primitive procedure notequal to the de�ned

language. This procedure should return a value representing false if its two argument

numbers are equal, and a value representing true otherwise. (You're supposed to know how

true and false are represented in the interpreter.)

Your task is to add the primitive procedure notequal by �lling in the code for the necessary

changes below. If you need any auxiliary procedures for your de�nition, you must also write

out those in your solution.

(define apply-prim-op

; TYPE: (-> (prim-proc (list Expressed-Value)) Expressed-Value)

(lambda (prim-op args)

(case prim-op

((+) (+ (car args) (cadr args)))

((-) (- (car args) (cadr args)))

((*) (* (car args) (cadr args)))

((add1) (+ (car args) 1))

((sub1) (- (car args) 1))

(else (error "Invalid prim-op name:" prim-op)))))

(define prim-op-names ; TYPE: (list symbol)

'(+ - * add1 sub1

))

2. (10 points) Briey describe what you would have to do to add the variable pi (which should

denote 3.14159) as a built-in variable to an interpreter that supports assignment (:=). Give

the relevant code for maximum credit.

3

3. (10 points) Briey (in 1 or 2 sentences) answer the following question. What changes

needed to be made to the interpreter to handle let expressions?

4. Briey (in 1 or 2 sentences) answer the following questions.

(a) (5 points) What is a closure?

(b) (10 points) Why are closures needed in the interpreter?

(c) (10 points) Are closures needed in a language, like FORTRAN 77 and C, that does not

allow nested procedures (i.e., procedure declarations to appear within the scope of

other procedures)? Why or why not?

4

5. (20 points) Write a version of syntax-expand, which takes a parsed expression and returns

a parsed expression, expanding the following syntactic sugar for a when expression, where

test and body are each an hexpi in the grammar.

when test do body) if test then body else 0

The following is an example.

(syntax-expand

(parse "+(3, when less(x,4) do x := *(x,x))")

= (parse "+(3, if less(x,4) then x := *(x,x) else 0)")

The syntax and abstract syntax your code should handle are given below.

hexpi ::= hvarrefi varref (var)

j hinteger-literali lit (datum)

j hoperatori (hoperandsi) app (rator rands)

j if hexpi then hexpi else hexpi if (test-exp then-exp else-exp)

j proc hvarlisti hexpi proc (formals body))

j when hexpi do hexpi when (test body)

hoperatori ::= hvarrefi j (hexpi)
hoperandsi ::= () j (hexpi f, hexpig�)

Your code should expand when expressions nested within other expressions.

5

6. (20 points) In this problem you will implement the following syntax in the de�ned language.

hexpi ::= hvari :=: hvari

The meaning of this syntax is supposed to be that the values of the two variables are

swapped.

For example the following expression would return the list (10 5).

let a = 5; b = 10

in begin

a :=: b;

cons(a, cons(b, emptylist))

end

Use the following for the abstract syntax for the swap-expression.

(define-record swap (left-var right-var))

Your task is to implement the above syntax, by �lling in the code for the swap case of

eval-exp below.

To save time, only give the code for the swap case, and any auxiliary procedures that are

not in the standard interpreters and that you call in that case.

(define eval-exp

; TYPE: (-> (parsed-exp Environment) Expressed-Value)

(lambda (exp env)

(variant-case exp

(lit (datum) datum)

(varref (var) (cell-ref (apply-env env var)))

; ...

; put your code below

6

7. (30 points) In this problem you will implement the following syntax in the de�ned language.

hexpi ::= repeat hvari := 1 to hexpi do hbodyi
hbodyi ::= hexpi

The meaning of this syntax is that, if hexpi evaluates to a positive integer, then hbodyi is
evaluated (for its side-e�ects) that number of times. For example, if hexpi evaluates to 5,

then the hbodyi is evaluated 5 times; however, if hexpi evaluates to 0 or a negative number,

then the hbodyi is not evaluated. Furthermore, the evaluation of hbodyi takes place in an

environment extended with the variable hvari; this variable is initialized to 1, and

incremented by 1 after each time the hbodyi is evaluated. The value returned by a repeat

expression is 0.

Note that hexpi should only be evaluated once. The region of the hvari declared in the

repeat expression is just the hbodyi of that expression.

To save time (on this test) you may assume that the hexpi evaluates to an integer; that is

you don't have to check for type errors.

For example the following expression would return 10.

let sum = 0; last = 4

in begin

repeat i := 1 to last

do begin

sum := sum + i;

last := 5

end;

sum

end

Use the following for the abstract syntax of a repeat-expression.

(define-record repeat-exp (var final-val body))

Your task is to implement the above syntax, by �lling in the code for the repeat-exp case

of eval-exp on the next page.

7

To save time, only give the code for the repeat-exp case, and any auxiliary procedures that

are not in the standard interpreters and that you call in that case.

(define eval-exp

; TYPE: (-> (parsed-exp Environment) Expressed-Value)

(lambda (exp env)

(variant-case exp

(lit (datum) datum)

(varref (var) (cell-ref (apply-env env var)))

; ...

; put your code below

