
1

Spring, 1996 Name:

. My Section Day and Time :

Com S 342 | Principles of Programming Languages

Test on EOPL Chapters 1 and 2

This test has 9 questions and pages numbered 1 through 7.

Reminders

This test is closed book and notes.

If you need more space, use the back of a page. Note when you do that on the front.

This test is timed. We will not grade your test if you try to take more than the time allowed.

Therefore, before you begin, please take a moment to look over the entire test so that you can

budget your time.

For programs, indentation is important to us for \clarity" points; if your code is sloppy or hard

to read, you will lose points. We may take o� a small amount if you do not give TYPE comments

for recursive helping procedures. However, you do not have to write such comments for procedures

for which the type is stated in the problem. Correct syntax also matters. Check your code over for

syntax errors. You will lose points if your code has syntax errors.

Subset of Scheme You May Use

Unless otherwise stated, when de�ning procedures you may only use: helping procedures that you

de�ne yourself, comments, and the procedures and keywords that are included in the following

list. (That is, on this test do not use Scheme procedures and keywords that are absent from the

following list.) The notation c...r means caar, cadr, cddr, cdar, caaar, etc. You may only use

define at the top level.

', #t, #f, *, +, -, /, <, <=, =, >=, >,

and, andmap, append, apply, boolean?, car, cdr, c...r, char?,

cond, cons, define, display, else, eq?, equal?, eqv?, error,

if, let, letrec, lambda, list, length, list?, map, newline,

not, null?, number?, or, pair?, procedure?, quote, string,

string?, string=?, string-append, string-ci=?, string-length,

string-ref, string->list, string->number, string->symbol,

substring, symbol?, vector, vector?, vector-length,

vector->list, vector-ref, zero?

2

1. (10 points) Consider the following grammar.

hexpri ::= hnumberi
j [hnumberi : fhnumberig�]

j (hexpri hb-opi hexpri)

j hu-opi hexpri
hnumberi ::= 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7 j 8 j 9

hb-opi ::= + j - j *

hu-opi ::= transpose j invert

In each of the spaces provided (\ ") below, write \yes" if the text is an example of an

hexpri in the above grammar, and \no" if it is not.

(a) [5 4 1]

(b) [3 : 4 2 1 4 5]

(c) [5 : (4 + 2)]

(d) (x + 3)

(e) ([2 : 1 3] + transpose [4 : 8 9 7 5])

2. (5 points) Using Scheme, give an example of a curried procedure. (Don't ask us what a

\curried procedure" is, you're supposed to know that.)

3. (5 points) Briey describe how curried procedures can be useful.

4. (15 points) In each of the spaces provided (\ ") below, write, in set brackets, the entire

set of the free variables in the preceeding Scheme expression. For example, write fx; yg, if
the free variables are x and y. If there are no free variables, write fg. (You're supposed to

know what a \free variable" is.)

(a) (lambda (ls) (car (cdr ls)))

(b) (lambda (h)

(lambda (g)

(lambda (x)

(h (g x)))))

(c) ((lambda (q r) (f q r))

x

(p q))

3

5. (10 points) In the following expression, draw an arrow from each bound hvarrefi to its
declaration.

(lambda (f g h)

((lambda (x)

(lambda (z w x)

(f (g w) x z)))

(lambda (x ls f)

(lambda (g)

(g (f x ls))))))

6. (10 points) Consider the following expression.

(lambda (append head tail)

((lambda (f)

(lambda (ls append head)

(head (append (f ls tail) ls))))

(lambda (z w)

(lambda (x)

(append (head z) (w x))))))

Give the lexical address form of the above expression, by �lling in the blanks below,

replacing all the hvarrefis in the above expression by their lexical addresses. (You're

supposed to know what a \lexical address" is.)

(lambda (append head tail)

((lambda (f)

(lambda (ls append head)

))

(lambda (z w)

(lambda (x)

))))

4

7. (20 points) Write a procedure, graph, with type

(-> ((-> (number) number) (list number))

(list (list number)))

that takes a procedure, f, and a list of numbers, lon, and returns a list of two-element lists

of numbers. The �rst element in each two-element list is an element of lon, and the second

is the value of invoking f on that element. The following are examples.

(graph (lambda (x) (+ x 1)) '())

==> ()

(graph (lambda (x) (+ x 1)) '(3 7 10))

==> ((3 4) (7 8) (10 11))

(graph (lambda (y) (* y 3)) '(1 2 3 4 5 6 7))

==> ((1 3) (2 6) (3 9) (4 12) (5 15) (6 18) (7 21))

(graph (lambda (z) (* z z)) '(1 2 3 4 5 6 7))

==> ((1 1) (2 4) (3 9) (4 16) (5 25) (6 36) (7 49))

5

8. (20 points) Without using vector->list, write a procedure, vector-positive?, which has

the following type.

(-> ((vector number)) boolean)

The procedure vector-positive? takes a vector of number, von, and returns #t just when

each number in von is positive (strictly greater than 0). The following are examples.

(vector-positive? '#()) ==> #t

(vector-positive? '#(1 2 3 4)) ==> #t

(vector-positive? '#(2 3 4)) ==> #t

(vector-positive? '#(0 0 7)) ==> #f

(vector-positive? '#(8 4 -1 3 7)) ==> #f

(vector-positive? '#(3008 44 33 7 0)) ==> #f

6

9. (30 points) Recall the grammar for the language lambda-1:

hexpi ::= hvarrefi
j (lambda (hvari) hexpi)

j (hexpi hexpi)

hvarrefi ::= hvari
hvari ::= hsymboli

Write a procedure, fv-map, with the following type

(-> ((-> (symbol) exp) exp) exp)

that takes a procedure, proc, and an hexpi, e, and returns an hexpi that is the same shape

as e, but in which each free varref x is replaced by the value of (proc x). (Don't ask us

what a \free varref" is, you're supposed to know that.)

The following are examples.

(fv-map (lambda (v) 'z) 'x) ==> z

(fv-map (lambda (v) 'z) '(x y)) ==> (z z)

(fv-map (lambda (v) 'z) '(lambda (x) (car x)))

==> (lambda (x) (z x))

(fv-map (lambda (v) v) '(lambda (x) (car x)))

==> (lambda (x) (car x))

(fv-map (lambda (v) (list 'f v)) 'x) ==> (f x)

(fv-map (lambda (v) (list 'f v)) '(lambda (x) x))

==> (lambda (x) x)

(fv-map (lambda (v) (list 'f v))

'(x (x y)))

==> ((f x) ((f x) (f y)))

(fv-map (lambda (v) (list 'f v))

'(lambda (x) (x (x y))))

==> (lambda (x) (x (x (f y))))

(fv-map (lambda (v) (list 'f v))

'(x (lambda (x) (x (x y)))))

==> ((f x) (lambda (x) (x (x (f y)))))

(fv-map (lambda (v) (list 'f v))

'(lambda (y) (x (lambda (x) (x (x y))))))

==> (lambda (y) ((f x) (lambda (x) (x (x y)))))

Hint: use a helping procedure with an accumulator (but don't try to make the helping

procedure tail-recursive).

There is space for your answer on the next page.

7

