
1

Com S 342 Name:
Spring 2006

Principles of Programming Languages

Exam 4 on Environment-Passing Interpreters
This test has 7 questions and pages numbered 1 through 10.

Reminders

For this test, you can use one (1) page (8.5 by 11 inches, one (1) side, no less than 9pt font) of
notes. Handwriting is okay. No photo-reduction is permitted. Don’t use anything with printing on
the other side, please. These notes are to be handed in at the end of the test. Have your name in
the top right corner. Use of other notes or failure to follow these instructions will be considered
cheating.

If you need more space, use the back of a page. Note when you do that on the front.
This test is timed. We will not grade your test if you try to take more than the time allowed.

Therefore, before you begin, please take a moment to look over the entire test so that you can
budget your time.

For programs, indentation is important to us for “clarity” points; if your code is sloppy or hard
to read, you will lose points. Correct syntax also matters. Check your code over for syntax errors.
You will lose points if your code has syntax errors.

You can use helping procedures whenever you like.

For Grading:

Problem Points Score
1 10
2 20
3 15
4 12
5 3

6(a) 10
6(b) 10
6(c) 10

7 10

2

This page and the next just contain reference material for problems on later pages.
The following is the syntax of the expressions in the defined language of section 3.7, with
comments on the right enclosed in “quotes” describing the abstract syntax trees.

〈expression〉 ::= 〈number〉 “lit-exp (datum)”
| 〈identifier〉 “var-exp (id)”
| 〈primitive〉 ({〈expression〉}*(,)) “primapp-exp (prim rands)”
| if 〈expression〉 “if-exp (test-exp

then 〈expression〉 true-exp
else 〈expression〉 false-exp)”

| let {〈identifier〉 = 〈expression〉}* “let-exp (ids rands
in 〈expression〉 body)”

| proc ({〈identifier〉}*(,)) “proc-exp (ids
〈expression〉 body)”

| (〈expression〉 {〈expression〉}*) “app-exp (rator rands)”
| letrec “letrec-exp

{〈identifier〉 ({〈identifier〉}*(,)) (proc-names idss
= 〈expression〉}* bodies

in 〈expression〉 letrec-body)”
| set 〈identifier〉 = 〈expression〉 “varassign-exp (id rhs-exp)”
| begin 〈expression〉 “begin-exp (first

{; 〈expression〉}* end rest)”

〈primitive〉 ::= + | - | * | add1 | sub1
| equal? | cons | car | cdr | list

The following are the expression abstract syntax trees for the interpreter of section 3.7.

(define-datatype expression expression?
(lit-exp (datum number?))
(var-exp (id symbol?))
(primapp-exp (prim primitive?) (rands (list-of expression?)))
(if-exp (test-exp expression?) (true-exp expression?) (false-exp expression?))
(let-exp (ids (list-of symbol?)) (rands (list-of expression?)) (body expression?))
(proc-exp (ids (list-of symbol?)) (body expression?))
(app-exp (rator expression?) (rands (list-of expression?)))
(letrec-exp (proc-names (list-of symbol?)) (idss (list-of (list-of symbol?)))

(bodies (list-of expression?)) (letrec-body expression?))
(begin-exp (first expression?) (rest (list-of expression?)))
(varassign-exp (id symbol?) (rhs-exp expression?)))

3

The following are some define-datatype declarations and the types of associated helpers from
the chapter 3.7 interpreters that you can use in the next several problems.

eopl:error : (-> (symbol string datum ...) poof)

;; ----- references -----------
(define-datatype reference reference?

(a-ref (position integer?) (vec vector?)))

deref : (forall (T) (-> ((ref-of T)) T))
setref! : (forall (T) (-> ((ref-of T) T) void))

;; ---- environment ADT ----------
environment? : (type-predicate-for environment)
empty-env : (-> () environment)
extend-env : (-> ((list-of symbol) (list-of Expressed-Value) environment)

environment)
extend-env-recursively : (-> ((list-of symbol) (list-of (list-of symbol))

(list-of expression) environment)
environment)

apply-env : (-> (environment symbol) Expressed-Value)
apply-env-ref : (-> (environment symbol) (ref-of Expressed-Value)))
defined-in-env? : (-> (environment symbol) boolean)

;; ---- Truth Values ---------
true-value? : (-> (Expressed-Value) boolean)

;; ---- ProcVal (procedure values) --------
(define-datatype procval procval?

(closure (ids (list-of symbol?)) (body expression?) (env environment?)))

apply-procval : (-> (procval (list-of Expressed-Value)) Expressed-Value)

;; ---- Expressed-Values --------
(define-datatype Expressed-Value expval?

(number->expressed (num number?))
(procval->expressed (pv procval?))
(list->expressed (lst (list-of expval?))))

expressed->number : (-> (Expressed-Value) number)
expressed->procval : (-> (Expressed-Value) Procval)
expressed->list : (-> (Expressed-Value) (list-of Expressed-Value))
number->expressed? : (-> (Expressed-Value) boolean)
procval->expressed? : (-> (Expressed-Value) boolean)
list->expressed? : (-> (Expressed-Value) boolean)

4

1. (10 points) This is a question about adding a primitive to the defined language. Consider an
interpreter for the defined language extended with procedures and lists. For this interpreter
your task is to add a new built-in primitive append, whose syntax is shown below, with
comments on the right enclosed in “quotes” describing the abstract syntax trees.

〈primitive〉 ::= . . .
| append “append-prim ()”

Its semantics is that append(E1, E2) evaluates E1 and E2 (in some unspecified order), and
returns the interpreter’s representation for the list whose elements are the elements of the
value of the list E1 followed by the elements of E2. The following are examples:

--> append(list(), list())
()
--> append(list(3, 4, 2), list(2, 2, 7))
(3 4 2 2 2 7)
--> append(list(5, 3), append(list(7, 2), list(3, 5)))
(5 3 7 2 3 5)
--> append(append(list(1, 2), list(3, 4)), append(list(5, 6), list()))
(1 2 3 4 5 6)
--> append(list(list(3, 4), list(2, 1)), list(list(), list(5, 9, 3), list(2)))
((3 4) (2 1) () (5 9 3) (2))
--> (car(cdr(append(list(proc(x) x), list(proc(y) +(y,1))))) 6)
7

You can assume that this primitive is given exactly two arguments, and you can let the
interpreter’s ADT operations give error messages if one of the arguments is not the
interpreter’s representation of a list (see the operations starting on page 3 above). You can
use Scheme’s procedure append : (forall (T) (-> ((list-of T) ...) (list-of T))).

Please complete the code for apply-primitive for the case of the append-prim below. You
don’t have to change anything else in the interpreter.

(define-datatype primitive primitive?
;; ... assume the other primitives are unchanged
(append-prim))

(deftype apply-primitive
(-> (primitive (list-of Expressed-Value)) Expressed-Value))

(define apply-primitive
(lambda (prim args)

(cases primitive prim
;; ... assume the other primitive cases are done,
;; and add yours below...

5

2. (20 points) In this problem you will implement two new expressions, freeze E and thaw E,
whose syntax is as follows, with comments on the right enclosed in “quotes” describing the
abstract syntax trees.

〈expression〉 ::= . . .
| freeze 〈expression〉 “freeze-exp (body)”
| thaw 〈expression〉 “thaw-exp (body)”

The expression freeze E creates a thunk (that is a closure with an empty formal parameter
list) containing E and the current environment.

The expression thaw E evaluates E to obtain such a thunk, and then obtains the value of
the expression inside the thunk, by running that expression in the thunk’s environment.
You may assume that the argument to thaw is a thunk (i.e., you don’t have to check for
that thaw’s argument is a thunk).

Thus, in general the value of thaw freeze E is the value of E.

However, note that the expression inside freeze E is not evaluated when freeze E is
evaluated, but only when the resulting thunk is passed as an argument to thaw. Thus any
side effects, infinite looping, or errors can only happen when this thunk is thawed, not when
freeze E is evaluated.

The following are examples (in which the first doesn’t give any details about the
environment):

--> freeze 3
(closure () (lit-exp 3) "<env>")
--> thaw freeze 342
342
--> let th = freeze +(100, 242) in +(thaw th, thaw th)
684
--> let x = 6

in let z = freeze +(x,10)
in +(200, thaw car(list(z)))

216
--> let x = 6

in let z = freeze +(x,10)
in let x = 30

in thaw z
16
--> letrec loop() = (loop)

in let p = proc(x,ignored) x
in let y = freeze (loop)
in (p 178 y)

178
--> letrec loop() = (loop)

in let frozen = list(freeze *(10,10), freeze *(5,6), freeze (loop))
in +(thaw car(frozen), thaw car(cdr(frozen)))

130

Please fill in your answer on the next page.

6

Below complete the code for eval-expression for both freeze-exp and thaw-exp. You
don’t have to change anything else in the interpreter.

(define-datatype expression expression?
;; ... assume the other expressions are unchanged
(freeze-exp (body expression?))
(thaw-exp (body expression?)))

(deftype eval-expression (-> (expression environment) Expressed-Value))
(define eval-expression

(lambda (exp env)
(cases expression exp

;; ... assume the other expression cases are done,
;; and add code for freeze and thaw below...

7

3. (15 points) In this problem you will implement a pre-increment expression with the
following syntax.

〈expression〉 ::= . . .
| ++ 〈identifier〉 “pre-inc-exp (id)”

The expression ++I adds 1 to the the value of the identifier I, assigns that incremented
value to I, and also returns that value. Thus it is just like the Java or C++ pre-increment
operator expression. The following are examples:

--> let x = 0 in ++x
1
--> let x = 0 in let y = ++x in list(x, y)
(1 1)
--> let x = 0 in let y = ++x in list(++x, ++y)
(2 2)
--> let z = 3

i = 20
in begin set z = +(++i, ++z); set i = ++i; list(z, i) end

(25 22)

Below complete the code for eval-expression for pre-inc-exp. You don’t have to change
anything else in the interpreter. You can assume that the identifier being incremented holds
a number.

(define-datatype expression expression?
;; ... assume the other expressions are unchanged
(pre-inc-exp (id symbol?)))

(deftype eval-expression (-> (expression environment) Expressed-Value))
(define eval-expression

(lambda (exp env)
(cases expression exp

;; ... assume the other expression cases are done,
;; and add code for pre-inc-exp below...

8

4. (12 points) This is the first of 2 problems about procedures, scoping, and recursion.
Suppose we try to implement the factorial procedure in the defined language with static
scoping (and call by value) as follows.

let fact = proc(n) if equal?(n,0) then 1 else *(n, (fact sub1(n)))
in (fact 3)

List the letters of all of the following that are true statements about the above defined
language program. Don’t include in your list any letters for statements that are false, as you
will lose a point for each incorrect answer.

(a) The program terminates normally, and returns 6.

(b) The program goes into an infinite loop.

(c) The program ends with an error because fact is not defined.

(d) The scope of the binding of fact includes the body of the let.

(e) The scope of the binding of fact includes the body of the proc expression.

(f) The closure formed for the proc expression has no environment in it.

(g) The closure formed for the proc expression has an environment, but that environment
has no binding for fact.

(h) The closure formed for the proc expression has an environment, and that environment
binds fact to that closure.

(i) If we used dynamic scoping, then the program would return 6

(j) If we used dynamic scoping, then the program would go into an infinite loop.

(k) If we used dynamic scoping, then the program would end in an error, because fact is
not defined.

(l) If the above program used call-by-reference, then it would return 6.

5. (3 points) Consider the following defined language program in an interpreter with static
scoping.

let fact = 0
in begin

set fact = proc(n) if equal?(n,0) then 1 else *(n, (fact sub1(n)));
(fact 3)
end

Which of the following is true about the above program?

(a) The program terminates normally, and returns 6.

(b) The program goes into an infinite loop.

(c) The program ends with an error because fact is not defined.

9

6. This is a problem about parameter passing mechanisms. Consider the following code in the
defined language with static scoping, assignment, and lists.

let a = 3
b = 11
c = 400

in let p = proc(w, x, y, z)
begin
set x = b;
set b = +(y, z);
list(a, b, c, w, x, y, z)

end
in let q = (p a a b +(c, 44))

in cons(a, cons(b, cons(c, q)))

(a) (10 points) What is the result of the above program if call-by-value is used as the
parameter passing mechanism?

(b) (10 points) What is the result of the above program if call-by-reference is used as the
parameter passing mechanism?

(c) (10 points) What is the result of the above program if call-by-value-result is used as
the parameter passing mechanism? (Copy back starting at the left, using left-to-right
ordering.)

10

7. This is a problem about call by name and call by need. Consider the following in an
interpreter with static scoping.

let count = 0
in let g = proc(x)

begin
set count = add1(count);
x

end
in let h = proc(y) -(*(2, y), y)

in let res = (h (g 3))
in +(*(100, res), count)

(a) (5 points) What is the result of the above program if call-by-name is used as the
parameter passing mechanism?

(b) (5 points) What is the result of the above program if call-by-need is used as the
parameter passing mechanism?

