
1

Fall, 1998 Name:

My Section Day and Time :

Com S 342 | Principles of Programming Languages

Test on EOPL Chapter 5

This test has 8 questions and pages numbered 1 through 8.

Reminders

For this test, you can use one (1) page (8.5 by 11 inches, one (1) side, no less than 9pt font) of

notes. No photo-reduction is permitted. These notes are to be handed in at the end of the test.

Use of other notes or failure to follow these instructions will be considered cheating.

During the test, if you need more space for an answer, use the back of a page. Note when you

do that on the front.

This test is timed. We will not grade your test if you try to take more than the time allowed.

Therefore, before you begin, please take a moment to look over the entire test so that you can

budget your time.

For programs, indentation is important to us for \clarity" points; if your code is sloppy or hard

to read, you will lose points. We will take o� a small amount if you do not give TYPE comments

for recursive helping procedures. However, you do not have to write such comments for procedures

for which the type is stated in the problem. Correct syntax also matters. Check your code over for

syntax errors. You will lose points if your code has syntax errors.

Subset of Scheme You May Use.

Unless otherwise stated in a problem, when solving problems you may only use standard ADTs

used in the interpreter (such as cells, environments, etc.), standard features of Scheme that we

discussed in class, define-record, variant-case, and helping functions that you de�ne yourself.

The standard is de�ned by the Revised4 Report on the Algorithmic Language Scheme.

There is a list of the types of some of the procedures from the \standard ADTs" on the next

page.

Parts of Scheme You May *Not* Use.

Unless otherwise stated in a problem, you are prohibited from de�ning your own macros, and

from using internal de�nes, all the input and output facilities, and the following keywords and

procedures. (Don't worry if you don't know what these are.)

call-with-current-continuation do



2

Types of helpers from the \standard ADTs" for chapter 5:

;; Expressed-Value ADT

number->expressed : (-> (number) Expressed-Value)

expressed->number : (-> (Expressed-Value) number)

procedure->expressed : (-> (Procedure) Expressed-Value)

expressed->procedure : (-> (Expressed-Value) Procedure)

list->expressed : (-> ((list Expressed-Value)) Expressed-Value)

expressed->list : (-> (Expressed-Value) (list Expressed-Value))

void->expressed : (-> (void) Expressed-Value)

expressed->denoted : (-> (Expressed-Value) Denoted-Value)

denoted->expressed : (-> (Denoted-Value) Expressed-Value)

;; Denoted-Value ADT

make-cell : (-> (Expressed-Value) Denoted-Value)

cell-ref : (-> (Denoted-Value) Expressed-Value)

cell-set! : (-> (Denoted-Value Expressed-Value) void)

cell-swap! : (-> (Denoted-Value Denoted-Value) void)

;; Procedure ADT

prim-proc? : (-> (Procedure) boolean)

make-prim-proc : (-> (symbol) Procedure)

prim-proc->prim-op : (-> (Procedure) symbol)

closure? : (-> (Procedure) boolean)

make-closure : (-> ((list symbol) parsed-exp Environment) Procedure)

closure->formals : (-> (Procedure) (list symbol))

closure->body : (-> (Procedure) parsed-exp)

closure->env : (-> (Procedure) Environment)

;; from ignore.scm

ignore : (-> (T) void)



3

1. (10 points) In this problem you will add a primitive procedure isZero to the de�ned

language. This procedure should return a value representing true if its argument is the

number zero (0), and a value representing false if its argument is some other number.

(You're supposed to know how true and false are represented in the interpreter.)

Your task is to add the primitive procedure isZero by �lling in the code for the necessary

changes below. Assume that you are given the appropriate procedures for the domain

Expressed-Value, such as expressed->number (see the previous page), but if you need any

other auxiliary procedures for your de�nition, you must also write out those in your solution.

(define apply-prim-op

; TYPE: (-> (symbol (list Expressed-Value)) Expressed-Value)

(lambda (prim-op args)

(case prim-op

((+) (number->expressed (+ (expressed->number (car args))

(expressed->number (cadr args)))) )

((*) (number->expressed (* (expressed->number (car args))

(expressed->number (cadr args)))) )

((-) (number->expressed (- (expressed->number (car args))

(expressed->number (cadr args)))) )

((add1) (number->expressed (+ (expressed->number (car args)) 1)) )

((sub1) (number->expressed (- (expressed->number (car args)) 1)) )

(else (error "Invalid prim-op name:" prim-op)))))

(define prim-op-names ; TYPE: (list symbol)

'(+ - * add1 sub1

))

2. (10 points) Briey (in 3 or 4 sentences) answer the following question. What changes were

needed to the interpreter to allow local binding (the let special form)?

3. (5 points) What is the scope rule used with dynamic assignment?



4

4. (10 points) This is a question about dynamic assignment. Consider the following expression

in the de�ned language.

let blue = 512; red = 1024

in let color = blue; output = emptylist

in let addint = proc(c) output := cons(list(c, color), output)

in begin

addint(45);

color := red during addint(33);

cons(color, output)

end

Give the result of the above expression.

5. (10 points) Consider the following expression in the de�ned language.

letrecproc

map(f, ls) = foldr(proc(x,ans) cons(f(x),ans),

emptylist,

ls);

foldr(f, z, ls) = if null(ls) then z

else f(car(ls), foldr(f,z,cdr(ls)))

in map(myFun, list(342))

Write, in the de�ned language's concrete syntax, an equivalent desugared form of the above

expression, which does not use letrec. (You may use let in the desugared form.)



5

6. (15 points) This is a question about dynamic scoping. Consider the following expression in

the de�ned language.

let y = 342; z = 541

in let f = proc(x)

list(y, +(x, z)); %%% draw the picture when execution is here

p = proc(y)

f(let z = 52 in +(z, 3))

in let y = 5; z = 10

in p(+(y, z))

Using dynamic scoping, (a) draw a picture of the run-time stack when execution reaches the

point indicated (with the stack growing up the page), and (b) give the result (if any) of the

above expression. (If the expression has no result, or encounters an error, write that.)



6

7. (20 points) In this problem you will implement the following syntax in the de�ned language.

hexpi ::= unless hexpi do hexpi

Use the following as the abstract syntax for the unless-expression.

(define-record unless-exp (test-exp body))

The meaning of this syntax is supposed to be that if the test expression (following unless)

is false, then the body expression (following do) is evaluated and its value is returned;

otherwise 0 is returned. For example, in the de�ned language we would have

let c = 7 in begin unless 0 do c := 2; c end ==> 2

let c = 7 in begin unless 1 do c := 2; c end ==> 7

That is, unless e1 do e2 is equivalent to if e1 then 0 else e2. However, you are not to

implement this as a syntactic sugar. Instead you will implement this in eval-exp directly,

by �lling in the code for the unless-exp case of eval-exp below.

To save time, only give the code for the unless-exp case, and any auxiliary procedures that

you call in that case.

Hint: think about the types!

(define eval-exp

; TYPE: (-> (parsed-exp Environment) Expressed-Value)

(lambda (exp env)

(variant-case exp

(lit (datum) (number->expressed datum))

(varref (var) (denoted->expressed (apply-env env var)))

; ...

; put your code below



7

8. (30 points) In this problem you will implement the following syntax in the de�ned language.

hexpi ::= foreach hvari in hexpi do hbodyi
hbodyi ::= hexpi

Use the following for the abstract syntax of a foreach-expression.

(define-record foreach (var list-exp body))

The meaning of this syntax is that, if hexpi evaluates to a list, then hbodyi is evaluated (for

its side-e�ects) for each element of the list, with hvari bound to each successive element of

the list. The evaluation starts at the front of the list.

For example the following expression would return 10.

let total = 0

in begin

foreach elem in list(0,1,2,3,4) do total := total + elem;

total

end

For example, suppose hexpi evaluates to the list (5 9 3 1). Then the interpreter is to bind

hvari to 5 and evaluate hbodyi. After this �nishes, the interpreter binds hvari to 9 and

evaluates hbodyi again. It continues by evaluating the hbodyi in an environment with hvari
bound to 3 and then to 1. The value returned by a foreach expression is 0.

Note that hexpi should only be evaluated once. The region of the hvari declared in the

foreach expression is just the hbodyi of that expression.

To save time (on this test) you may assume that the hexpi evaluates to a list.

Your task is to implement the above syntax, by �lling in the code for the foreach case of

eval-exp on the next page.



8

To save time, only give the code for the foreach case, and any auxiliary procedures that

you call in that case.

(define eval-exp

; TYPE: (-> (parsed-exp Environment) Expressed-Value)

(lambda (exp env)

(variant-case exp

(lit (datum) (number->expressed datum))

(varref (var) (denoted->expressed (apply-env env var)))

; ...

; put your code below


