
1

Fall, 1998 . Name:

Com S 342 | Principles of Programming Languages

Test on EOPL Chapters 2.2-3, 3, 4.5{6

This test has 6 questions and pages numbered 1 through 8.

Reminders

For this test, you can use one (1) page (8.5 by 11 inches, one (1) side, no less than 8pt font) of

notes. No photo-reduction is permitted. These notes are to be handed in at the end of the test.

Use of other notes or failure to follow these instructions will be considered cheating. Please put

your name in the top right corner of your notes.

During the test, if you need more space for an answer, use the back of a page. Note when you

do that on the front.

This test is timed. We will not grade your test if you try to take more than the time allowed.

Therefore, before you begin, please take a moment to look over the entire test so that you can

budget your time.

For programs, indentation is important to us for \clarity" points; if your code is sloppy or hard

to read, you will lose points. We will take o� a small amount if you do not give TYPE comments

for recursive helping procedures. However, you do not have to write such comments for procedures

for which the type is stated in the problem. Correct syntax also matters. Check your code over for

syntax errors. You will lose points if your code has syntax errors.

Subset of Scheme You May Use.

Unless otherwise stated in a problem, when solving problems you may only use standard features of

the language that we discussed in class, define-record, variant-case, and helping functions that

you de�ne yourself. The standard is de�ned by the Revised4 Report on the Algorithmic Language

Scheme.

Parts of Scheme You May *Not* Use.

Unless otherwise stated in a problem, you are prohibited from de�ning your own macros, and

from using internal de�nes, all the input and output facilities, and the following keywords and

procedures. (Don't worry if you don't know what these are.)

call-with-current-continuation do



2

1. (10 points) In each of the spaces provided (\ ") below, write, in set brackets,

the entire set of the bound variables in the corresponding Scheme expression. For example,

write fv; wg, if the bound variables are v and w. If there are no bound variables, write fg.
(You're supposed to know what a \bound variable" is.)

(a) (let ((x (plus a b))

(y (foo x y)))

(lambda (z) (foo q y z)))

(b) (letrec ((sing (lambda (ls)

(if (null? ls) n (f (car ls) (cdr ls)))))

(f (let ((a ffty))

(lambda (x) (notify (plus x a))))))

(sing notes))

2. (5 points) In the space provided (\ ") below,

write, in set brackets, the entire set of the free variables in the corresponding Scheme

expression. For example, write fv; wg, if the free variables are v and w. If there are no free

variables, write fg. (You're supposed to know what a \free variable" is.)

(letrec ((sing (lambda (ls)

(if (null? ls) n (f (car ls) (cdr ls)))))

(f (let ((a ffty))

(lambda (x) (notify (plus x a))))))

(sing notes))



3

3. (15 points) Write a Scheme procedure,

last-dot-position : (-> (string) number)

that takes a string, fname, and returns the 0-based index of the last occurrence of the dot

(.) character in fname, if there is such an occurrence, and otherwise returns -1. (This is

useful in �nding the su�x of a �le name.)

The procedure you have to write, last-dot-position must be written without converting

the string to a list.

The following are examples:

(last-dot-position "abc.txt") ==> 3

(last-dot-position "01.3456.89") ==> 7

(last-dot-position "my.file.scm") ==> 7

(last-dot-position "...") ==> 2

(last-dot-position "no-suffix") ==> -1

(last-dot-position "") ==> -1

Note that the dot character can be written as #\. in Scheme. You should use the built-in

Scheme procedures

string-ref : (-> (string number) character)

string-length : (-> (string) number)

in your solution. The string-ref procedure returns the character in its string argument at

the 0-based index. For example, (string-ref "abc" 2) ==> #\c. The string-length

procedure returns the number of characters in its argument.



4

4. This problem is about mutation.

(a) (5 points) Draw a box and pointer diagram for the state after executing the following

top-level Scheme forms.

(define programmers (cons 'lovelace '()))

(define pioneers (cons 'turing (cons 'church programmers)))

(set! programmers (cons 'knuth programmers))

(set-car! (cdr programmers) 'ada)

(b) (5 points) Continuing from the above, what is the current value of the following

expression?

(list 'programmers-is programmers

'pioneers-is pioneers)

(c) (5 points) Continuing from the above, what is the value of the following expression?

(You can draw another diagram, but please leave the one for part (a) alone.)

(begin

(set! pioneers (cdr pioneers))

(list 'programmers-is programmers

'pioneers-is pioneers))



5

5. (30 points) Write a procedure, strength-reduce of the following type

(-> (parsed-exp) parsed-exp)

that desugars square expressions into multiply expressions.

In this problem, the variant record type parsed-exp, is de�ned by the union of the

following record types, which forms an abstract syntax.

(define-record varref (var))

(define-record lit (datum))

(define-record app (rator rands))

(define-record square (arg-exp))

(define-record multiply (left-exp right-exp))

The types of the �elds in the varref, lit, and app, records are as in the lambda-multiple

grammar; that is, the the type of the rands �eld is (list parsed-exp).

Your procedure is use the following formula for desugaring, where E is an arbitrary

parsed-exp.

#(square E) ==> #(multiply E E)

There are some examples on the next page.



6

The following are examples for the problem on the previous page.

(strength-reduce (make-square (make-varref 'x)))

==> #(multiply #(varref x) #(varref x))

(strength-reduce (make-varref 'x))

==> #(varref x)

(strength-reduce (make-app

(make-varref 'h)

(list (make-square (make-lit 5))

(make-varref 'a))))

==> #(app #(varref h) (#(multiply #(lit 5) #(lit 5)) #(varref a)))

(strength-reduce (make-app

(make-varref 'g)

(list (make-square (make-lit 3))

(make-square

(make-app

(make-varref 'f)

(list (make-varref 'y) (make-lit 4)))))))

==> #(app #(varref g) (#(multiply #(lit 3) #(lit 3))

#(multiply #(app #(varref f)

(#(varref y) #(lit 4)))

#(app #(varref f)

(#(varref y) #(lit 4))))))



7

6. (25 points) This problem is about transforming procedural to record representations.

One can imagine an \in�nite" image (like a picture or a photograph) as a mapping from x

and y coordinates to a color for the pixel at that coordinate. This type will be called image

below. Consider the following procedural representation of image. (We will use symbols for

colors.)

(define image-generator ; TYPE: (-> ((-> (number number) symbol)) image)

(lambda (f)

(lambda (x y)

(f x y))))

(define move-x ; TYPE: (-> (image number) image)

(lambda (image dx)

(lambda (x y)

(pixel-at image (+ x dx) y))))

(define move-y ; TYPE: (-> (image number) image)

(lambda (image dy)

(lambda (x y)

(pixel-at image x (+ y dy)))))

(define pixel-at ; TYPE: (-> (image number number) symbol)

(lambda (image x y)

(image x y)))

Examples aren't really going to help you, but if we de�ne

(define red-at-10s ; TYPE: image

(image-generator

(let ((multiple-of-10? ; TYPE: (-> (number number) boolean)

(lambda (n) (zero? (remainder n 10)))))

(lambda (x y)

(if (or (multiple-of-10? x) (multiple-of-10? y))

'red

'blue)))))

(define red-shifted ; TYPE: image

(move-y (move-x red-at-10s 5) 5))

then the following are examples of how the above code works:

(pixel-at red-at-10s 0 0) ==> red

(pixel-at red-at-10s 5 3) ==> blue

(pixel-at red-at-10s 10 0) ==> red

(pixel-at red-shifted 0 0) ==> blue

(pixel-at red-shifted 5 5) ==> red

(pixel-at red-shifted 15 5) ==> red

(pixel-at red-shifted 10 10) ==> blue



8

Your task is to transform the above representation into one that uses records. Do this by

giving the define-record declarations needed and the bodies of the procedures in the

spaces provided on the next page. You must use variant-case in your solution.

;;; Write the define-record declarations below

;;; Now fill in the code for the operations below

(define image-generator ; TYPE: (-> ((-> (number number) symbol)) image)

(define move-x ; TYPE: (-> (image number) image)

(define move-y ; TYPE: (-> (image number) image)

(define pixel-at ; TYPE: (-> (image number number) symbol)


