
1

Fall, 1998 Name:

. My Section Time :

Com S 342 | Principles of Programming Languages

Test on EOPL Chapters 1 to 2.2

This test has 6 questions and pages numbered 1 through 7.

Reminders

This test is closed book and notes.

If you need more space, use the back of a page. Note when you do that on the front.

This test is timed. We will not grade your test if you try to take more than the time allowed.

Therefore, before you begin, please take a moment to look over the entire test so that you can

budget your time.

For programs, indentation is important to us for \clarity" points; if your code is sloppy or hard

to read, you will lose points. We may take o� a small amount if you do not give TYPE comments

for recursive helping procedures. However, you do not have to write such comments for procedures

for which the type is stated in the problem. Correct syntax also matters. Check your code over for

syntax errors. You will lose points if your code has syntax errors.

Subset of Scheme You May Use

Unless otherwise stated, when de�ning procedures you may only use: helping procedures that you

de�ne yourself, comments, and the procedures and keywords that are included in the following

list. (That is, on this test do not use Scheme procedures and keywords that are absent from the

following list.) The notation c...r means caar, cadr, cddr, cdar, caaar, etc. You may only use

define at the top level.

', #t, #f, *, +, -, /, <, <=, =, >=, >,

and, append, apply, boolean?, car, cdr, c...r, char?,

cond, cons, define, display, else, eq?, equal?, eqv?, error,

if, let, letrec, lambda, list, length, list?, map, newline,

not, null?, number?, or, pair?, procedure?, quote, string,

string?, string=?, string-append, string-ci=?, string-length,

string-ref, string->list, string->number, string->symbol,

substring, symbol?, vector, vector?, vector-length,

vector->list, vector-ref, zero?

2

1. (10 points) Consider the following grammar.

hclausei ::= hexpi . j hexpi :- hexpi .

hexpi ::= hatomi j hnamei (hatomi f, hatomig�)

hatomi ::= hnamei j hvari
hnamei ::= f j g j h j i j j

hvari ::= X j Y j Z

In each of the spaces provided (\ ") below, write \yes" if the text is an example of a

hclausei in the above grammar, and \no" if it is not.

(a) f

(b) f(X) :- X(h).

(c) f(i, j).

(d) f(X) :- g(Y, Z, i).

(e) f(X, i) :- g(Z, X), h(X).

2. (5 points) Using Scheme, write an uncurried version of the following curried procedure.

(Don't ask us what a \curried procedure" means, you're supposed to know that.)

(define s-combinator-c

(lambda (x)

(lambda (y)

(lambda (z)

((x z) (y z))))))

3

3. (20 points) Write a procedure, downcase-firsts, with type

(-> ((list (list string))) (list (list string)))

that takes a list of non-empty lists of strings, and returns the same list but with the �rst

string in each sublist changing its �rst letter to a lower case letter. To make this easier, use

the following helping procedure, which changes the �rst letter of a string to a lower case

letter.

(define downcase-word ;; TYPE: (-> (string) string)

(lambda (word)

(if (= (string-length word) 0)

word

(string-append (string (char-downcase (string-ref word 0)))

(substring word 1 (string-length word))))))

The following are examples of the procedure you are to write.

(downcase-firsts '())

==> ()

(downcase-firsts '(("It" "was" "the" "best")

("Did" "we" "forget:" "of" "times?")))

==> (("it" "was" "the" "best")

("did" "we" "forget:" "of" "times?"))

(downcase-firsts '(("Cain") ("Able") ("Adam") ("Eve")))

==> (("cain") ("able") ("adam") ("eve"))

(downcase-firsts '(("Computer" "science")))

==> (("computer" "science"))

4

4. (10 points) Write a Scheme procedure downcase-firsts* with the type

(-> ((list string) ...) (list (list string)))

that takes 0 or more arguments that are non-empty lists of strings, and returns a list of

these sublists with the �rst string in each sublist having its �rst letter changed to a lower

case letter. You may use the downcase-firsts procedure from the previous problem above

if you wish. The following are examples.

(downcase-firsts*)

==> ()

(downcase-firsts* '("It" "was" "the" "best")

'("Did" "we" "forget:" "of" "times?"))

==> (("it" "was" "the" "best")

("did" "we" "forget:" "of" "times?"))

(downcase-firsts* '("Cain") '("Able") '("Adam") '("Eve"))

==> (("cain") ("able") ("adam") ("eve"))

(downcase-firsts* '("Computer" "science"))

==> (("computer" "science"))

5

5. (20 points) Write a procedure preceed-each with the following type.

(-> (T (list T)) (list T))

that takes an element, pre, and a list, ls, of the same type, and returns a list that is like

ls, but with each element of ls preceeded by pre. The following are examples.

(preceed-each 'x '())

==> ()

(preceed-each 'x '(a b c))

==> (x a x b x c)

(preceed-each 'uh '(a fine time for this eh))

==> (uh a uh fine uh time uh for uh this uh eh)

6

6. (30 points) Consider the following grammar.

hlinei ::= (hthirdi hthirdi hthirdi)

hthirdi ::= hsymboli j hlinei

In this grammar, the nonterminal hsymboli has the same syntax as in Scheme. We will

always use this grammar with the context-sensitive constraint that the each hthirdi of a
hlinei has the same shape; for example, they will either all be symbols or not. Write a

procedure, change-middle-right, with the following type

(-> (symbol line) line)

that takes a symbol, sym, and a hlinei, ln, and returns a line that is like ln, except that the

middle and rightmost symbols in each middle and rightmost line are changed to sym.

Assume that all the hthirdis in a hlinei have the same shape; that is, if the �rst third is a

symbol, then all are, etc.

The following are examples.

(change-middle-right '* '(a b c))

==> (a * *)

(change-middle-right '* '((a b c) (d e f) (g h i)))

==> ((a b c) (d * *) (g * *))

(change-middle-right '* '(((a b c) (d e f) (g h i))

((j k l) (m n o) (p q r))

((s t u) (v w x) (y z a1))))

==> (((a b c) (d e f) (g h i))

((j k l) (m * *) (p * *))

((s t u) (v * *) (y * *)))

(change-middle-right '+ '((((a0 b0 c0) (d0 e0 f0) (g0 h0 i0))

((j0 k0 l0) (m0 n0 o0) (p0 q0 r0))

((s0 t0 u0) (v0 w0 x0) (y0 z0 a1)))

(((a1 b1 c1) (d1 e1 f1) (g1 h1 i1))

((j1 k1 l1) (m1 n1 o1) (p1 q1 r1))

((s1 t1 u1) (v1 w1 x1) (y1 z1 a2)))

(((a2 b2 c2) (d2 e2 f2) (g2 h2 i2))

((j2 k2 l2) (m2 n2 o2) (p2 q2 r2))

((s2 t2 u2) (v2 w2 x2) (y2 z2 a3)))))

==> ((((a0 b0 c0) (d0 e0 f0) (g0 h0 i0))

((j0 k0 l0) (m0 n0 o0) (p0 q0 r0))

((s0 t0 u0) (v0 w0 x0) (y0 z0 a1)))

(((a1 b1 c1) (d1 e1 f1) (g1 h1 i1))

((j1 k1 l1) (m1 + +) (p1 + +))

((s1 t1 u1) (v1 + +) (y1 + +)))

(((a2 b2 c2) (d2 e2 f2) (g2 h2 i2))

((j2 k2 l2) (m2 + +) (p2 + +))

((s2 t2 u2) (v2 + +) (y2 + +))))

Hint: don't hesitate to write helping procedures. There is more space on the next page.

7

(space for answer to the problem on the previous page)

