
1

Fall, 1995 Name:

. My Section Day and Time :

Com S 342 | Principles of Programming Languages

Final test focusing on EOPL 5.7, 6.1-6.3

This test has 9 questions and pages numbered 1 through 7.

Reminders

For this test, you can use one page (one side, no less than 10pt font) of notes. These notes are to

be handed in at the end of the test.

If you need more space, use the back of a page. Note when you do that on the front.

This test is timed. We will not grade your test if you try to take more than the time allowed.

Therefore, before you begin, please take a moment to look over the entire test so that you can

budget your time.

Indentation is important to us for \clarity" points; if your code is sloppy or hard to read, you

will lose points. Please indent as described in class.

Correct syntax also matters. Check your code over for syntax errors. You will lose points if

your code has syntax errors.

Subset of Scheme You May Use

Unless otherwise stated in a problem, when solving problems you may only use standard features

of the language that we discussed in class, and helping functions that you de�ne yourself. The

standard is de�ned by the Revised4 Report on the Algorithmic Language Scheme.

Parts of Scheme You May *Not* Use

Unless otherwise stated in a problem, you are prohibited from using internal de�nes, all the input

and output facilities, macros, and the following keywords and procedures. (Don't worry if you don't

know what these are.)

call-with-current-continuation do

2

1. This is a question about parameter passing mechanisms. Choose a programming language

you know (e.g., Scheme, Common Lisp, C, C++, Pascal, FORTRAN) and tell us:

(a) The name of the language.

(b) (5 points) The name of its default parameter passing mechanism. (By default, we

mean the mechanism used if no additional syntax, like & in C++ or var in Pascal is

used to declare formal parameters.)

(c) (5 points) The name of its array model.

2. (5 points) What is the name of the scope rule used with dynamic assignment?

3. (5 points) Briey describe why the following does not work with dynamic scoping.

let ct = proc(m)

proc(r)

*(m, r)

in (ct(5))(6);

3

4. (10 points) This is a question about dynamic scoping. Consider the following expression in

the de�ned langauge (using call-by-value).

let x = 3; y = 4

in let f = proc(x) *(x, y);

g = proc(y) f(+(5,y))

in g(+(x,2))

Using dynamic scoping, (a) Draw a picture of the run-time stack to show how the

computation proceeds, and (b) give the result of the above expression.

5. (10 points) This is a question about dynamic assignment. Consider the following expression

in the de�ned langauge (using call-by-value).

let x = 3; y = 4

in let f = proc(x) *(x, y);

g = proc() x := f(+(5,y))

in begin

y := +(x,2) during g();

list(x,y)

end

Give the result of the above expression.

4

6. (80 points) This is a problem about parameter passing mechanisms and array models.

Consider the following expression

letarray a[2]; b[2]

in begin

a[0] := 10; a[1] := 11; b[0] := 20; b[1] := 21;

let x = 3

in let p = proc(c,e,v,w)

begin

b[0] := v; a := c; v := e; w := x;

%%% draw a picture for this point

c[0]

end

in let r = p(b,a[1],x,b[0])

in list(r, a[0], a[1], b[0], b[1], x)

end

For each of the following combinations of parameter passing mechanism and array model:

(i) draw a picture of the execution (as discussed in class) for the point noted by the

comment, and (ii) give the output of the expression. The combinations you are to do are as

follows (there are more on the next page).

(a) Call-by-value with the indirect model.

(b) Call-by-value with the direct model.

5

Here is another copy of the expression, for your convenience.

letarray a[2]; b[2]

in begin

a[0] := 10; a[1] := 11; b[0] := 20; b[1] := 21;

let x = 3

in let p = proc(c,e,v,w)

begin

b[0] := v; a := c; v := e; w := x;

%%% draw a picture for this point

c[0]

end

in let r = p(b,a[1],x,b[0])

in list(r, a[0], a[1], b[0], b[1], x)

end

(c) Call-by-reference with the indirect model

(d) Call-by-reference with the direct model

6

7. (10 points) This is a problem about call-by-value-result. Consider the following expression.

let x = 3; y = 10

in let p = proc(a, b)

begin

a := +(a, b);

b := +(b, x);

a := +(a, y);

%%% draw a picture for this point

a

end

in let r = p(x, y)

in list(r,x,y)

Using call-by-value-result: (i) draw a picture of the execution (as discussed in class) for the

point noted by the comment, and (ii) give the result of the expression.

8. (10 points) Briey explain the following in English. What changes are made in the

interpreter when changing from the indirect model of arrays to the direct model (in the

call-by-value interpreter)?

7

9. (13 points) Write a version of syntax-expand, which takes a parsed expression and returns

a parsed expression, expanding the following syntactic sugar for an unless expression,

where test and body are each an hexpi in the grammar.

unless test do body) if test then 0 else body

The following is an example.

(syntax-expand

(parse "+(3, unless gt(x,4) do x := *(x,x)"))

= (parse "+(3, if gt(x,4) then 0 else x := *(x,x)"))

The syntax and abstract syntax your code should handle are given below.

hexpi ::= hvarrefi varref (var)

j hinteger-literali lit (datum)

j hoperatori (hoperandsi) app (rator rands)

j if hexpi then hexpi else hexpi if (test-exp then-exp else-exp)

j (proc hvarlisti hexpi proc (formals body))

j unless hexpi do hexpi unless (test body)

hoperatori ::= hvarrefi j (hexpi)
hoperandsi ::= () j (hexpi f, hexpig�)

Your code should expand unless expressions nested within other expressions.

