
1

Fall, 1995 Name:

. My Section Day and Time :

Com S 342 | Principles of Programming Languages

Test on EOPL 3.6, 4.1-3, 4.5-6, 5.1-5.6

This test has 5 questions and pages numbered 1 through 5.

Reminders

For this test, you can use one page (one side, no less than 10pt font) of notes. These notes are to

be handed in at the end of the test.

If you need more space, use the back of a page. Note when you do that on the front.

This test is timed. We will not grade your test if you try to take more than the time allowed.

Therefore, before you begin, please take a moment to look over the entire test so that you can

budget your time.

Indentation is important to us for \clarity" points; if your code is sloppy or hard to read, you

will lose points. Please indent as described in class.

Correct syntax also matters. Check your code over for syntax errors. You will lose points if

your code has syntax errors.

Subset of Scheme You May Use

Unless otherwise stated in a problem, when solving problems you may only use standard features

of the language that we discussed in class, and helping functions that you de�ne yourself. The

standard is de�ned by the Revised4 Report on the Algorithmic Language Scheme.

Parts of Scheme You May *Not* Use

Unless otherwise stated in a problem, you are prohibited from using internal de�nes, all the input

and output facilities, macros, and the following keywords and procedures. (Don't worry if you don't

know what these are.)

call-with-current-continuation do

2

1. (15 points) Simplify the following lambda calculus expressions as much as possible by using

beta (�) and eta (�) reduction. (If the expression cannot be simpli�ed, or gets into an

in�nite loop, write that.) You may use alpha (�) conversion if that helps you. For partial

credit, show your work.

(a)

((lambda (x)

((f x) 4))

(lambda (x) x))

(b)

(((lambda (z)

(lambda (y)

(z y)))

(lambda (x) (x y)))

x)

(c)

(((lambda (x) (lambda (y) x))

(lambda (x) x))

((lambda (x) (x x)) (lambda (x) (x x))))

(Hint: use leftmost reduction.)

3

2. (10 points) In this problem you will add a primitive procedure negative to the de�ned

language. This procedure should return a value representing true when called with a

negative number, and a value representing false when called with 0 or a positive number.

(You're supposed to know how true and false are represented in the interpreter. If you need

any auxiliary procedures for your de�nition, write those into your solution.)

Your task is to add the primitive procedure negative by making the necessary changes to

the code from the interpreter below.

(define apply-prim-op

; TYPE: (-> (prim-proc (list Expressed-Value)) Expressed-Value)

(lambda (prim-op args)

(case prim-op

((+) (+ (car args) (cadr args)))

((-) (- (car args) (cadr args)))

((*) (* (car args) (cadr args)))

((add1) (+ (car args) 1))

((sub1) (- (car args) 1))

(else (error "Invalid prim-op name:" prim-op)))))

(define prim-op-names ; TYPE: (list symbol)

'(+ - * add1 sub1

))

3. (10 points)

(a) What changes to the data structures (ADTs, domains) used in the interpreter were

needed to handle variable assignment (:=)?

(b) Briey describe other changes to the code in the interpreter that were needed to handle

the variable assignment itself and the changes to the data structures.

4

4. (20 points) In this problem you will implement the following syntax in the de�ned language.

hexpi ::= do hbodyi until hexpi
hbodyi ::= hexpi

The meaning of this syntax is supposed to be that the hbodyi is evaluated (for its

side-e�ects), then the hexpi is evaluated; if it results in a true value, the value of the whole

do-hexpi is 0, otherwise, the evaluation process is repeated (by evaluating the hbodyi, etc.).

For example the following expression would return 10.

let x = 4; sum = 0

in begin

do begin

sum := sum + x;

x := x - 1

end

until (x = 0);

sum

end

Use the following for the abstract syntax of a do-expression.

(define-record do-exp (body test))

Your task is to implement the above syntax, by �lling in the code for the do-exp case of

eval-exp below. To save time, only give the code for the do-exp case, and any auxiliary

procedures you call in that case.

(define eval-exp

; TYPE: (-> (parsed-exp Environment) Expressed-Value)

(lambda (exp env)

(variant-case exp

(lit (datum) datum)

(varref (var) (cell-ref (apply-env env var)))

; ...

; put your code below

5

5. (25 points) Write a version of syntax-expand, which takes a parsed expression and returns

a parsed expression, expanding the following syntactic sugar for sequential-let, where

each di is a hdecli, and e is an hexpi in the grammar.

sequential-let d1; : : :;dn in e) let d1 in : : : let dn in e

The following is an example.

(syntax-expand

(parse "+(3, sequential-let x = 4; y = *(x,x); z = *(y,x) in +(y,z))"))

= (parse "+(3, let x = 4 in let y = *(x,x) in let z = *(y,x) in +(y, z))")

The syntax and abstract syntax (on the right) that your code should handle are given below.

hexpi ::= hvarrefi varref (var)

j hinteger-literali lit (datum)

j hoperatori (hoperandsi) app (rator rands)

j if hexpi then hexpi else hexpi if (test-exp then-exp else-exp)

j proc hvarlisti hexpi proc (formals body)

j let hdeclsi in hexpi let (decls body)

j sequential-let hdeclsi in hexpi sequential-let (decls body)

hoperatori ::= hvarrefi j (hexpi)
hoperandsi ::= () j (hexpi f, hexpig�)
hdeclsi ::= hdecli f; hdeclig�

hdecli ::= hvari = hexpi decl (var exp)

Your code should expand sequential-let expressions nested within other expressions. It

does not have to expand let expressions. (You may assume the interpreter handles let.)

