
1

Fall, 1995 Name:

. My Section Day and Time :

Com S 342 | Principles of Programming Languages

Test on EOPL Chapters 2.3 through 3

This test has 6 questions and pages numbered 1 through 4.

Reminders

For this test, you can use one page (one side, no less than 10pt font) of notes. These notes are to

be handed in at the end of the test.

If you need more space, use the back of a page. Note when you do that on the front.

This test is timed. We will not grade your test if you try to take more than the time allowed.

Therefore, before you begin, please take a moment to look over the entire test so that you can

budget your time.

Indentation is important to us for \clarity" points; if your code is sloppy or hard to read, you

will lose points. Please indent as described in class.

Correct syntax also matters. Check your code over for syntax errors. You will lose points if

your code has syntax errors.

Subset of Scheme You May Use

Unless otherwise stated in a problem, when solving problems you may only use standard features

of the language that we discussed in class, and helping functions that you de�ne yourself. The

standard is de�ned by the Revised4 Report on the Algorithmic Language Scheme.

Parts of Scheme You May *Not* Use

Unless otherwise stated in a problem, you are prohibited from using internal de�nes, all the input

and output facilities, macros, and the following keywords and procedures. (Don't worry if you don't

know what these are.)

call-with-current-continuation do set! set-car! set-cdr!

string-set! string-fill! vector-set! vector-fill!



2

1. (10 points) In each of the spaces provided (\ ") below, write, in set brackets,

the entire set of the free variables in the preceeding expression. For example, write fx; yg, if
the free variables are x and y. If there are no free variables, write fg. (You're supposed to

know what a \free variable" is.)

(a) (lambda (z) ((lambda (ls) (car ls)) (f z)))

(b) ((lambda (q) q) q)

(c) (let ((x 3) (y x)) (+ x 7))

2. (5 points) In each of the spaces provided (\ ") below, write, in set brackets,

the entire set of the bound variables in the preceeding expression. For example, write fx; yg,
if the bound variables are x and y. If there are no bound variables, write fg. (You're
supposed to know what a \bound variable" is.)

(a) (lambda (ls) (car (cdr ls)))

(b) (lambda (x) (lambda (y) x))

3. (10 points) Consider the following expression.

(lambda (list car cdr)

((lambda (x)

(lambda (z w x)

(list (car w) x z)))

(lambda (x ls list)

(lambda (car)

(car (list x ls))))))

Give the lexical address form of the above expression, by �lling in the blanks below,

replacing all the hvarrefis in the above expression by their lexical addresses. (You're

supposed to know what a \lexical address" is.)

(lambda (list car cdr)

((lambda (x)

(lambda (z w x)

))

(lambda (x ls list)

(lambda (car)

))))

4. (10 points) Name a programming language in which the representations of user-de�ned

ADTs are:

(a) opaque

(b) transparent

(You're supposed to know what these terms mean.)



3

5. (20 points) Consider the following grammar for a version of the lambda calculus, where

hnumberi and hsymboli are as usual.

hexpi ::= hvarrefi j hnumberi j (hexpi hexpi) j (lambda (hvari) hexpi)
hvarrefi ::= hsymboli
hvari ::= hsymboli

Write a procedure, count-free-occurrences, that takes a symbol, var, and a hexpi, exp,
and returns the number of free occurrences of var in exp. The following are examples.

(count-free-occurrences 'x 'x) ==> 1

(count-free-occurrences 'x '((g x) (f x))) ==> 2

(count-free-occurrences 'z '(lambda (z) ((g z) (f z)))) ==> 0

(count-free-occurrences 'q '(lambda (x) ((g x) (f x)))) ==> 0

(count-free-occurrences 'g '(lambda (x) ((g x) (f x)))) ==> 1

(count-free-occurrences 'car

'((lambda (f) (lambda (ls) (car (car ls))))

((lambda (car) ((ccompose car) cdr))

(lambda (x) (lambda (y) ((car (car y)) (car x)))))))

==> 5

Hint: don't use an abstract syntax or too many helping procedures.



4

6. (20 points) In this problem, we will use the following records to represent the type

\binary-tree". That is, the type binary-tree is the union of the three record types below.

(Note that this is slightly di�erent than in the text.)

(define-record empty ())

(define-record leaf (number))

(define-record interior (left-tree number right-tree))

Write a procedure inorder-traversal, that takes a binary-tree, btree, and returns a list

of the numbers in btree \in order". That is, the list returned is such that each occurrence

of a number in the list preceeds the numbers to its right in btree, and follows any numbers

to its left in btree. The following are examples.

(inorder-traversal (make-empty)) ==> ()

(inorder-traversal (make-leaf 3)) ==> (3)

(inorder-traversal (make-interior (make-empty) 3 (make-empty))) ==> (3)

(inorder-traversal (make-interior (make-leaf 2) 3 (make-empty))) ==> (2 3)

(inorder-traversal (make-interior (make-leaf 2) 3 (make-leaf 4))) ==> (2 3 4)

(let ((tree-578 (make-interior (make-leaf 5) 7 (make-leaf 8))))

(let ((tree-123 (make-interior (make-leaf 1) 2 (make-leaf 3))))

(inorder-traversal

(make-interior (make-interior tree-123 4 tree-123)

6

(make-interior tree-578 9 (make-empty))))))

==> (1 2 3 4 1 2 3 6 5 7 8 9)

You must use variant-case in your solution. (Hint: use Scheme's append procedure.)


