
1

Fall, 1995 Name:

My Section Number: My Section Day and Time :

Com S 342 | Principles of Programming Languages

Test on EOPL Chapters 1 to 2.2

This test has 5 questions and pages numbered 1 through 4.

Reminders

This test is closed book and notes.

If you need more space, use the back of a page. Note when you do that on the front.

This test is timed. We will not grade your test if you try to take more than the time allowed.

Therefore, before you begin, please take a moment to look over the entire test so that you can

budget your time.

Indentation is important to us for \clarity" points; if your code is sloppy or hard to read, you

will lose points. Please indent as described in class.

Correct syntax also matters. Check your code over for syntax errors. You will lose points if

your code has syntax errors.

Subset of Scheme You May Use

Unless otherwise stated, when de�ning procedures you may only use: helping procedures that you

de�ne yourself, comments, and the procedures and keywords that are included in the following

list. (That is, on this test do not use Scheme procedures and keywords that are absent from the

following list.) The notation c...r means caar, cadr, cddr, cdar, caaar, etc. You may only use

define at the top level.

', #t, #f, *, +, -, /, <, <=, =, >=, >,

and, andmap, append, apply, boolean?, car, cdr, c...r, char?, cond, cons,

define, display, else, eq?, equal?, eqv?, error, if, let, letrec,

lambda, list, length, list?, map, newline, not, null?, number?,

or, pair?, procedure?, quote, string, string?, string=?, string-append,

string-ci=?, string-length, string-ref,

string->list, string->number, string->symbol, substring, symbol?,

vector, vector?, vector-length, vector->list, vector-ref, zero?

2

1. (10 points) Consider the following grammar.

hexpri ::= hvari
j (fn hvari => hexpri)

j hexpri (hexpri)

hvari ::= x j y j z

In each of the spaces provided (\ ") below, write \yes" if the text is an example of an

hexpri in the above grammar, and \no" if it is not.

(a) (fn x => x)

(b) (fn y => y x)

(c) ((fn x => x) y)

(d) x (z)

(e) (fn x => (fn y => x (x (y))))

2. (10 points) Briey describe one (1) way that Scheme exhibits regularity. (Don't ask us what

regularity means, you're supposed to know that.)

3. (10 points) Write a procedure, duplicate-each that takes a list of symbols, lsym, and

returns a list with two copies of each symbol, in the same order as the original list. The

following are examples.

> (duplicate-each '(a b c a))

(a a b b c c a a)

> (duplicate-each '(b c a))

(b b c c a a)

> (duplicate-each '())

()

> (duplicate-each '(it was a dark and stormy night))

(it it was was a a dark dark and and stormy stormy night night)

3

4. (15 points) Write a procedure, product-nn, that takes a list of numbers, lon, and a datum,

errvalue, and returns the product of the numbers in the list, except that it returns

errvalue if there is a number in the list that is negative.

The following are examples.

> (product-nn '(1 2 3 4) 'found-negative)

24

> (product-nn '() 'found-negative)

1

> (product-nn '(-1 -2) 'found-negative)

found-negative

> (product-nn '(8 9 10 -1 3 4) #f)

#f

> (product-nn '(8 9 10 3 4) #f)

8640

> (product-nn (list 10 20 30) 'kaboom)

6000

4

5. (15 points) Write a procedure, slst-map, that takes a procedure, proc, and a hs-listi, slst,
and returns a hs-listi that has each symbol s in slst replaced by the value of (proc s).

(Recall that a hs-listi is de�ned by the following grammar.)

hs-listi ::= (fhsymbol-expressionig�)

hsymbol-expressioni ::= hsymboli j hs-listi

The following are examples.

> (slst-map (lambda (sym) 'z) '((a) () ((b () c)) d))

((z) () ((z () z)) z)

> (slst-map (lambda (sym) 'z) '())

()

> (slst-map (lambda (sym) (if (eq? sym 'a) 'x sym)) '(a b c a))

(x b c x)

> (slst-map (lambda (sym) (if (eq? sym 'a) 'x sym)) '(b () c ((a))))

(b () c ((x)))

> (slst-map (lambda (sym) (if (eq? sym 'a) 'x sym)) '((a) b () c ((a))))

((x) b () c ((x)))

> (slst-map (lambda (sym) (if (eq? sym 'a) 'x sym)) '((a a) b () c ((a))))

((x x) b () c ((x)))

