
1

Fall, 2000 Name:

22C:54, section 2 — Programming Language Concepts

Test on EOPL Chapter 3
This test has 5 questions and pages numbered 1 through 7.

Reminders

For this test, you can use one (1) page (8.5 by 11 inches, one (1) side, no less than 9pt font) of
notes. No photo-reduction is permitted. These notes are to be handed in at the end of the test.
Use of other notes or failure to follow these instructions will be considered cheating. Please put
your name in the top right corner of your notes.

During the test, if you need more space for an answer, use the back of a page. Note when you
do that on the front.

This test is timed. We will not grade your test if you try to take more than the time allowed.
Therefore, before you begin, please take a moment to look over the entire test so that you can
budget your time.

For programs, indentation is important to us for “clarity” points; if your code is sloppy or
hard to read, you will lose points. We may take off a small amount if you do not give deftype
declarations for recursive helping procedures. However, you do not have to write such comments
for procedures for which the type is stated in the problem. Correct syntax also matters. Check
your code over for syntax errors. You will lose points if your code has syntax errors.

Subset of Scheme You May Use.

Unless otherwise stated in a problem, when solving problems you may only use features of Scheme,
extensions that we discussed in class, and helping functions that you define yourself. The standard
is defined by the Revised5 Report on the Algorithmic Language Scheme.

Parts of Scheme You May *Not* Use.

Unless otherwise stated in a problem, you are prohibited from defining your own macros, and
from using internal defines, all the input and output facilities, and the following keywords and
procedures. (Don’t worry if you don’t know what these are.)

call-with-current-continuation do set! set-car! set-cdr!
string-set! string-fill! vector-set! vector-fill!

2

1. This is a question about free and bound variables. Consider the following Scheme
expression.

(let ((x (invert y))
(y2 (subtract y (invert x))))

(letrec ((iter (lambda (a b)
(if (done? a b)

b
(iter b (subtract y2 a)))))

(done? (lambda (old new)
(small? (abs (subtract old new))))))

(iter y y2)))

(a) (10 points) Write, in set brackets, the entire set of the free variables in expression
above. For example, write {v, w}, if the free variables are v and w. If there are no free
variables, write {}. (You’re supposed to know what a “free variable” is.)

(b) (10 points) Write, in set brackets, the entire set of the bound variables in the expression
above. For example, write {v, w}, if the bound variables are v and w. If there are no
bound variables, write {}. (You’re supposed to know what a “bound variable” is.)

2. (10 points) Desugar the following Scheme expression by writing and expression that has the
same meaning, but which does not use let, and, or.

(let ((v (and q r))
(w (or s t)))

(f v w))

3. Briefly answer the following questions. (You are supposed to know the terms involved.)

(a) (5 points) What are the advantages of extending a language with syntactic sugars?

(b) (10 points) Should our type checker’s syntax define-record-type be considered a
syntactic sugar? Why or why not?

3

4. (30 points) This is a problem about desugaring. The language you will work with has the
following concrete syntax.

〈exp〉 ::= 〈varref〉 | 〈literal〉
| (〈exp〉 {〈exp〉}∗) | (lambda ({〈var〉}∗ 〈exp〉)
| (if 〈exp〉 〈exp〉 〈exp〉) | (do 〈exp〉 unless 〈exp〉)

〈varref〉 ::= 〈var〉
〈var〉 ::= 〈symbol〉
〈literal〉 ::= 〈number〉

The abstract syntax for this grammar is defined by the following records.

(define-record-type varref parsed-exp
((var symbol)))

(define-record-type lit parsed-exp
((datum number)))

(define-record-type app parsed-exp
((rator parsed-exp) (rands (list parsed-exp))))

(define-record-type lambda parsed-exp
((formals (list symbol)) (body parsed-exp)))

(define-record-type if parsed-exp
((test-exp parsed-exp) (then-exp parsed-exp) (else-exp parsed-exp)))

(define-record-type do-exp parsed-exp
((body parsed-exp) (test-exp parsed-exp)))

(define-record varref (var))
(define-record lit (datum))
(define-record app (rator rands))
(define-record lambda (formals body))
(define-record if (test-exp then-exp else-exp))
(define-record do-exp (body test-exp))

We will also assume that there are procedures parse-exp and unparse-exp with the usual
functionality and with the following types.

(deftype parse-exp (-> (datum) parsed-exp))
(deftype unparse-exp (-> (parsed-exp) datum))

Your task is to write the procedure desugar-do, with the following type.

(deftype desugar-do (-> (parsed-exp) parsed-exp))

Your procedure is to use the following formula for desugaring where E1 and E2 stand for
arbitrary expressions (instances of 〈exp〉) and E1’ and E2’ stand for their desugarings.

(do E1 unless E2) ---> (if E2’ 0 E1’)

In the abstract syntax the desugaring rule is:

(make-do-exp E1 E2) ---> (make-if E2’ (make-lit 0) E1’)

To receive full-credit your solution must use variant-case. There are some examples and
space for your answer on the next page.

4

The following are examples for the problem on the previous page.

(unparse-exp (desugar-do (parse-exp ’(do x unless y))))
==> (if y 0 x)

(unparse-exp (desugar-do (parse-exp ’x)))
==> x

(unparse-exp (desugar-do (parse-exp ’(h (do 5 unless b) a))))
==> (h (if b 0 5) a)

(unparse-exp (desugar-do
(parse-exp ’(lambda (x) (do x unless (f x))))))

==> (lambda (x) (if (f x) 0 x))
(unparse-exp

(desugar-do
(parse-exp

’(if g
(do (do c unless b) unless a)
(f (do 4 unless y))))))

==> (if g
(if a

0
(if b 0 c))

(f (if y 0 4)))

5

5. (25 points) This problem is about transforming procedural to record representations. The
procedural representation is given on this page. There is space space for your
transformation of it to a record representation on page 7.

One can imagine a piece of music as a mapping from from time to a notes (sounds). This
type will be called music below. We will think of time as a non-negative number. Although
you don’t need to understand how note works for this problem, for completeness its
implementation is as follows.

;;; file note.scm
(define-record-type note note ((pitch number)))
(define-record note (pitch))
(deftype note-transpose (-> (number note) note))
(define note-transpose

(lambda (half-steps note)
(make-note (* (expt 2 (/ half-steps 12))

(note->pitch note)))))

Consider the following procedural representation of music.

;;; procedural rep code below

(deftype music-generator (-> ((-> (number) note)) music))
(deftype transpose (-> (music number) music))
(deftype note-at (-> (music number) note))

(defrep music (-> (number) note))

(load-quietly "note.scm")

(define music-generator
(lambda (f)

(lambda (t)
(f t))))

(define transpose
(lambda (music half-steps)

(lambda (t)
(note-transpose half-steps (note-at music t)))))

(define note-at
(lambda (m t)

(m t)))

6

You don’t need to read this page. In any case, examples aren’t really going to help you do
this problem.

However, if you insist on reading some examples, suppose we define

(deftype minute-waltz music)
(define minute-waltz

(let ((omph (make-note 110)))
(let ((pah (note-transpose 6 omph)))

(music-generator
(lambda (t)

(cond
((> t 60) (make-note 0))
((= (remainder (inexact->exact (floor t)) 3) 0) omph)
(else pah)))))))

then the following are examples of how the above code works:

(note-at minute-waltz 3) ==> #(note 110)
(note-at minute-waltz 4) ==> #(note 155.56349186104046)
(note-at minute-waltz 5) ==> #(note 155.56349186104046)
(note-at minute-waltz 6) ==> #(note 110)
(note-at (transpose minute-waltz 12) 3) ==> #(note 220)
(note-at (transpose minute-waltz -1) 3) ==> #(note 103.82617439498628)

7

Your task is to transform the above procedural representation into one that uses records.
Do this by giving the define-record-type and define-record declarations needed and
the bodies of the procedures in the spaces provided below. You must use variant-case in
your solution.

(deftype music-generator (-> ((-> (number) note)) music))
(deftype transpose (-> (music number) music))
(deftype note-at (-> (music number) note))

(load-quietly "note.scm")

;;; Write the define-record-type declarations below

;;; Write the define-record declarations below

;;; Now fill in the code for the operations below

(define music-generator

(define transpose

(define note-at

