
1

Fall 2000 Name:

22C:54 — Programming Language Concepts

Test on EOPL Chapters 1 to 2.2
This test has 10 questions and pages numbered 1 through 9.

Reminders

This test is closed book and notes.
If you need more space, use the back of a page. Note when you do that on the front.
This test is timed. We will not grade your test if you try to take more than the time allowed.

Therefore, before you begin, please take a moment to look over the entire test so that you can
budget your time.

For programs, indentation is important to us for “clarity” points; if your code is sloppy or hard
to read, you will lose points. We may take off a small amount if you do not give TYPE comments
for recursive helping procedures. However, you do not have to write such comments for procedures
for which the type is stated in the problem. Correct syntax also matters. Check your code over for
syntax errors. You will lose points if your code has syntax errors.

Subset of Scheme You May Use

Unless otherwise stated, when defining procedures you may only use: helping procedures that you
define yourself, comments, and the procedures and keywords that are included in the following
list. (That is, on this test do not use Scheme procedures and keywords that are absent from the
following list.) The notation c...r means caar, cadr, cddr, cdar, caaar, etc. You may only use
define at the top level.

’, #t, #f, *, +, -, /, <, <=, =, >=, >,
and, append, apply, boolean?, car, cdr, c...r, char?,
cond, cons, define, display, else, eq?, equal?, eqv?, error,
if, let, letrec, lambda, list, length, list?,
map, max, member, memq, memv, min, newline,
not, null?, number?, or, pair?, procedure?, quote, string,
string?, string=?, string-append, string-ci=?, string-length,
string-ref, string->list, string->number, string->symbol,
substring, symbol?, vector, vector?, vector-length,
vector->list, vector-ref, zero?

2

1. (5 points) Broadly speaking, the features of a programming language can be classified into 3
all-encompassing categories. We used these categories to help organize our design at the
beginning of the course. Name these three categories, and give one example of each in
Scheme.

2. (5 points) Given the following definition,

(define the-sports
’(softball baseball (not gymnastics) volleyball womens-diving))

write a Scheme expression using procedures like car, cdr, etc., that extracts the symbol
gymnastics from the-sports. (Note: the expression you write should depend on the value
of the-sports, so ’gymnastics is not correct.)

3. (5 points) Draw a box-and-pointer diagram for the following list.

((olympics) in sydney)

4. (5 points) Using only parentheses, the procedure cons, quoted symbols (such as ’this), and
the empty list, ’(), write a Scheme expression that produces the following list.

((olympics) in sydney)

3

5. (10 points) Consider the following grammar.

〈ml-type〉 ::= 〈basic-type〉
| (〈ml-type〉 {× 〈ml-type〉}∗)
| 〈ml-type〉 -> 〈ml-type〉

〈basic-type〉 ::= int | real | char | bool

In each of the spaces provided (“ ”) below, write “yes” if the text is an example of a
〈ml-type〉 in the above grammar, and “no” if it is not.

(a) real

(b) (-> (int) real)

(c) (int × real × int)

(d) (int × real) -> bool

(e) int -> int -> (int × int)

6. (5 points) Define a curried version of the following procedure, call it average3-c and write
the deftype for it as well.

(deftype average3 (-> (number number number) number))
(define average3

(lambda (a b c)
(/ (+ a b c) 3)))

4

7. (10 points) Write a procedure, qualifies, with type

(deftype qualifies (-> ((list number)) (list boolean)))

that takes a list of numbers, lon, and returns a list of booleans of the same length, but with
each item in the result #t just when the corresponding item in the argument is strictly
greater than 7.9. The following are examples.

(qualifies ’(8.0 7.9 6.5 8.1 9.5 9.0)) ==> (#t #f #f #t #t #t)
(qualifies ’(9.0)) ==> (#t)
(qualifies ’()) ==> ()
(qualifies ’(0.0 2.1 9.3 8.2)) ==> (#f #f #t #t)

8. (5 points) Write a procedure qualifies* with type

(deftype qualifies* (-> (number ...) (list boolean)))

that takes zero or more numbers as arguments, and returns a list of booleans of the same
length, but with each item in the result #t just when the corresponding argument is strictly
greater than 7.9. You may, of course, use qualifies as a helping procedure.

(qualifies* 8.0 7.9 6.5 8.1 9.5 9.0) ==> (#t #f #f #t #t #t)
(qualifies* 9.0) ==> (#t)
(qualifies*) ==> ()
(qualifies* 0.0 2.1 9.3 8.2) ==> (#f #f #t #t)

5

9. (25 points) This is a problem about the type sym-exp. In your solution you may use the
sym-exp helpers, as in the homework. Their types are summarized below.

(deftype s-list? (-> (datum) boolean))
(deftype sym-exp? (-> (datum) boolean))
(deftype symbol->sym-exp (-> (symbol) sym-exp))
(deftype s-list->sym-exp (-> ((list sym-exp)) sym-exp))
(deftype sym-exp-symbol? (-> (sym-exp) boolean))
(deftype sym-exp-s-list? (-> (sym-exp) boolean))
(deftype sym-exp->symbol (-> (sym-exp) symbol))
(deftype sym-exp->s-list (-> (sym-exp) (list sym-exp)))
(deftype parse-sym-exp (-> (datum) sym-exp))
(deftype parse-s-list (-> (datum) (list sym-exp)))

Write a procedure wrap-sym-exp with type

(deftype wrap-sym-exp (-> (sym-exp) sym-exp))

that takes a sym-exp, se, and returns a sym-exp that is just like se, except that each
symbol in se is wrapped in a list. The following are examples.

(wrap-sym-exp (parse-sym-exp ’eh)) ==> (eh)
(wrap-sym-exp (parse-sym-exp ’())) ==> ()
(wrap-sym-exp (parse-sym-exp ’(and (swimming)))) ==> ((and) ((swimming)))
(wrap-sym-exp (parse-sym-exp ’(water polo () (and (swimming)))))

==> ((water) (polo) () ((and) ((swimming))))

We will take off a small number of points for procedures that do not type check.

6

10. (25 points) Consider the following grammar.

〈window-layout〉 ::= (window 〈symbol〉 〈width〉 〈height〉)
| (horizontal {〈window-layout〉}∗)
| (vertical {〈window-layout〉}∗)

〈width〉 ::= 〈number〉
〈height〉 ::= 〈number〉

In this grammar, the nonterminals 〈number〉 and 〈symbol〉 have the same syntax as in
Scheme. In your solution use the helping procedures starting on page 8, so that your code
will type check.

In the space provided on the next page, write a procedure, total-width, with type:

(deftype total-width (-> (window-layout) number))

This procedure takes a 〈window-layout〉, wl, and returns the total width of the layout. The
width of a 〈window-layout〉 of the form (window s n1 n2) is n1. The width of a
〈window-layout〉 of the form (horizontal w1 w2 . . . wm) is the sum of the widths of w1

through wm (inclusive). The width of a 〈window-layout〉 of the form (vertical w1 w2 . . .
wm) is the maximum of the widths of w1 through wm (inclusive). The following are
examples.

(total-width (parse-window-layout ’(window olympics 50 33))) ==> 50
(total-width

(parse-window-layout ’(horizontal (window olympics 80 33)
(window local-news 20 10)))) ==> 100

(total-width
(parse-window-layout ’(vertical (window olympics 80 33)

(window local-news 20 10)))) ==> 80
(total-width

(parse-window-layout ’(vertical (window star-trek 40 100)
(window olympics 80 33)
(window local-news 20 10)))) ==> 80

(total-width
(parse-window-layout

’(horizontal
(vertical (window tempest 200 100)

(window othello 200 77)
(window hamlet 1000 600))

(horizontal (window baseball 50 40)
(window track 100 60)
(window equesterian 70 30))

(vertical (window star-trek 40 100)
(window olympics 80 33)
(window local-news 20 10))))) ==> 1300

Feel free to use Scheme’s map and max procedures, as well as any others listed on the front
page as well as the helpers starting on page 8. There is space for your answer on the next
page.

7

;;; space for your answer, please write it below.

8

;;; <window-layout> ::= (window <symbol> <width> <height>)
;;; | (horizontal {<window-layout>}*)
;;; | (vertical {<window-layout>}*)
;;; <width> ::= <number>
;;; <height> ::= <number>

trustme! ;; suppress the type checker’s confusion about this file

(load-quietly-from-lib "all.scm")

(defrep window-layout (list datum))

(deftype window-layout? (-> (datum) boolean))
(define window-layout?

(lambda (d)
(or (window? d)

(and (horizontal? d) (all window-layout? (cdr d)))
(and (vertical? d) (all window-layout? (cdr d))))))

(deftype window? (-> (window-layout) boolean))
(define window?

(lambda (wl)
(and (list? wl) (= (length wl) 4)

(eq? (car wl) ’window)
(symbol? (cadr wl)) (number? (caddr wl)) (number? (cadddr wl)))))

(deftype horizontal? (-> (window-layout) boolean))
(define horizontal?

(lambda (wl)
(and (list? wl) (>= (length wl) 1)

(eq? (car wl) ’horizontal))))

(deftype vertical? (-> (window-layout) boolean))
(define vertical?

(lambda (wl)
(and (list? wl) (>= (length wl) 1)

(eq? (car wl) ’vertical))))

(deftype make-window (-> (symbol number number) window-layout))
(define make-window

(lambda (name width height)
(list ’window name width height)))

(deftype make-horizontal (-> ((list window-layout)) window-layout))
(define make-horizontal

(lambda (lwl)
(cons ’horizontal lwl)))

9

(deftype make-vertical (-> ((list window-layout)) window-layout))
(define make-vertical

(lambda (lwl)
(cons ’vertical lwl)))

(deftype extract-maker (-> ((-> (window-layout) boolean) string)
(-> (window-layout) (list datum))))

(define extract-maker
(lambda (test? name)

(lambda (x)
(if (test? x)

x
(error (string-append "not a " name " window-layout:") x)))))

(deftype window->name (-> (window-layout) symbol))
(define window->name

(lambda (wl)
(cadr ((extract-maker window? "window") wl))))

(deftype window->width (-> (window-layout) number))
(define window->width

(lambda (wl)
(caddr ((extract-maker window? "window") wl))))

(deftype window->height (-> (window-layout) number))
(define window->height

(lambda (wl)
(cadddr ((extract-maker window? "window") wl))))

(deftype horizontal->subwindows (-> (window-layout) (list window-layout)))
(define horizontal->subwindows

(lambda (wl)
(cdr ((extract-maker horizontal? "horizontal") wl))))

(deftype vertical->subwindows (-> (window-layout) (list window-layout)))
(define vertical->subwindows

(lambda (wl)
(cdr ((extract-maker vertical? "vertical") wl))))

(deftype parse-window-layout (-> (datum) window-layout))
(define parse-window-layout

(lambda (d)
(cond
((window? d) (make-window (cadr d) (caddr d) (cadddr d)))
((horizontal? d) (make-horizontal (map parse-window-layout (cdr d))))
((vertical? d) (make-vertical (map parse-window-layout (cdr d))))
(else (error "parse-window-layout: bad syntax:" d)))))

