II. Monotone Frameworks (2.3) Can we identify some commonalities between different analyses? Would doing that help implement them? A. general pattern ------------------------------------------ GENERAL PATTERN A_o(l) = if l \in E then i else A_.(l) = where \bigsqcup is either \bigcup or \bigcap F is either flow(S*) or flow^R(S*) E is {init(S*)} or final(S*) i is initial/final information f(l) is the transfer function for blocks B^l \in blocks(S*) For a forward analysis: F is flow(S*) A_o gives the entry conditions A_. gives the exit conditions For a backward analysis: F is flow^R(S*) A_o gives the exit conditions A_. gives the entry conditions ------------------------------------------ B. basic definitions (2.3.1) 1. property space ------------------------------------------ PROPERTY SPACES def: a *property space*, L = (L, \bigsqcup), is a set with \bigsqcup: Powerset(L) -> L a join operation that makes it a complete lattice. Thus: l1 \sqcup l2 = \bigsqcup { l1, l2 } \bot = \bigsqcup {} l1 \sqsubseteq l2 = (l1 \sqcup l2 = l2) Examples: For reaching definitions: L = Powerset(Var* x Lab^?_*) \sqcup = \cup \sqsubseteq = \subseteq For available expressions: L = Powerset(AExp*) \sqcup = \cap \sqsubseteq = \supseteq ------------------------------------------ 2. transfer functions ------------------------------------------ TRANSFER FUNCTION SPACE def: Let L be a partially-ordered set. Then Funs is a *transfer function space for L* iff f \in Funs ==> f : L -> L and f is monotone, f,g \in Funs ==> f o g \in Funs, and id_L \in Funs. ------------------------------------------ 3. monotone framework ------------------------------------------ MONOTONE FRAMEWORK def: (L, Funs) is a monotone framework iff L is a property space and Funs is a transfer function space for L. def: (L, Funs, F, E, i, f_.) is an *instance of a monotone framework* if and only if: - (L, Funs) is a monotone framework, - F is a finite set of pairs (of flows), - E is a finite set of extremal labels, - i \in L is an extremal value, - f : (dom(F) \cup E) -> (L -> L) s.t. for l in (dom(F) \cup E) f_l \in Funs ------------------------------------------ C. examples (2.3.2) D. predicate abstraction (new topic) ------------------------------------------ PREDICATE ABSTRACTION Goal: verify program properties Idea: Use property space of the form L = Powerset(Preds) Preds = {P1, ..., Pn} where each Pi is a nullary predicate Interpretation: {P3,P5} means P3 and P5 may/must be true (depending on kind of analysis) \sqcup is \cup Funs = monotonic (in \subseteq) functions on L ------------------------------------------ What's the bottom element? The top? How can you represent states? ------------------------------------------ PREDICATE ABSTRACTION EXAMPLE IsZero Analysis: At a given program point, which variables may be 0. "Abstract States" s \in L = Powerset(Preds) where Preds = {IsZero_x | x in Vars*} IsZero_y means y may be 0 F is flow(S*) E is {init(S*)} i is Preds fIZ(l) : L -> L, for l in Lab* fIZ(l)(s) = (s \ kill_IZ(B^l)(s)) \cup gen_IZ(B^l)(s) where B^l in blocks(S*) kill_IZ([x := a]^l)(s) = {IsZero_x} kill_IZ([skip]^l)(s) = {} kill_IZ([b]^l)(s) = {} gen_IZ([x := a]^l)(s) = {IsZero_x | (\exists cs \in \gamma(s) :: A[[a]]cs == 0)} gen_IZ([skip]^l)(s) = {} gen_IZ([b]^l)(s) = {} \gamma: L -> Store \gamma(s) = {cs | cs: Var* -> Int, IsZero_x \in s ==> cs(x) == 0} ------------------------------------------ What kind of analysis is this? Why this initial value i? What do the gen and kill functions do? What are the equations for IZ_entry(l) and IZ_exit(l)? ------------------------------------------ EXAMPLE [y := 3]^1; while [y>0]^2 do ([q := y-2]^3; [y := y-1]^4); [q := q div y]^5 Var* = {y, q} Preds = {IsZero_y, IsZero_q} IZ_entry(1) = IZ_exit(1) = IZ_entry(2) = IZ_exit(2) = IZ_entry(3) = IZ_exit(3) = IZ_entry(4) = IZ_exit(4) = IZ_entry(5) = IZ_exit(5) = ------------------------------------------ E. equation solving (2.4) 1. MFP (Maximal Fixed Point) solution (2.4.1) 2. MOP solution (2.4.2) (skip)