
COP 5021 — Program Analysis February 4, 2018

Homework 2: Overview and Project Start
See the syllabus and listen in class for the due dates.
In this homework you learn more about the fundamental ideas of program analysis described in chapters 1 and 2 of
the text, and you will get a start on your semester project.
If you wish, you can work in groups, and that is the default for the semester project part of this homework. However,
be sure to follow the process described in the course’s grading policy if you work in groups.

Read chapters 1 and 2 of our textbook: Principles of Program Analysis [1].

1. Consider the following abstract syntax of expressions in set theory.
e ∈ Exp expressions
es ∈ Exp expression sequences
n ∈ Num numeric literal
s ∈ SetExp set expression
x ∈ Var variables

e ::= true | x | s | a | e1 ∈ e2 | e1 ⊆ e2 | e1 = e2
| ¬e | e1 ∧ e2 | e1 ∨ e2 | e1 < e2 | λx.e | e1(e2) | let x = e1 in e2

a ::= n | x | a1 + a2 | a1 − a2 | a1 × a2
s ::= {es} | P(s) | s1 × s2 | {e0 | es} | e1 ∪ e2 | e1 ∩ e2
es ::= e1, . . . , en (where n ≥ 0)

Since this is abstract syntax, we will use parentheses to disambiguate expressions written in these forms. The
notation for expressions is supposed to have its standard mathematical meaning. For example, e1 × e2 can be
used to multiply numbers and also to form the cross product of two sets. Note that λx . e is the function with
formal x and body e. Also P(e) is the powerset of e; i.e., it is the set of all subsets of the set denoted by e.

The following will begin our exploration of type checking for set theory. We say that an expression in set theory
has a type error if it does not make sense mathematically. For example, true + 3 has a type error. Note that false
does make sense mathematically, as does 3 = 2, so “making sense” is not the same thing as “being true”. What
does not make sense is using an operator outside its domain, as in ¬4 or 3 ∈ 3.

(a) (5 points) Which of the following expressions have a type error? Note all that have type errors (there may
be 0, 1, or more of them). Briefly explain why.

A. 3 < 2

B. {y | y = 105}
C. 4 ∈ P({−1, 0, 1})
D. P({y | y = 105})
E. {4} ⊆ P({−1, 0, 1})

(b) (5 points) Which of the following expressions have no type error? Briefly explain why.
A. 3 ∈ 33

B. {(λx . x)(y) | ¬(y ∈ y)}
C. let q = 15 in ¬((q × q) < q)

D. {5, 0} × ({2, 1}+ 10)

E. ¬((λx . x)(3))

2

Read section 1.6 (especially 1.6.2) of our textbook: Principles of Program Analysis [1].

2. [Concepts] [Semantics] Suppose we want to write a type system for set theory that prevents type errors. We
wish to use judgments of the form Γ ` e : τ , where Γ is a type environment (a map from variables (x) to type
expressions, and types and type environments are given by the following abstract syntax.

Γ ∈ TypeEnv type environments
τ ∈ Type type expressions

Γ ::= x : τ | Γ, x : τ
τ ::= Int | Boolean | Set(τ) | τ1 × τ2 | τ1 → τ2

Here are a few type checking rules for set theory to give you the idea.

(VAR)

(Γ, x : τ) ` x : τ

(DROP)
Γ ` e : τ ′

(Γ, x : τ) ` e : τ ′

(PLUS)
Γ ` a1 : Int, Γ ` a2 : Int

Γ ` a1 + a2 : Int

(APP)
Γ ` e1 : τ2 → τ, Γ ` e2 : τ2

Γ ` e1(e2) : τ

(LAM)
(Γ, x : τ ′) ` e : τ

Γ ` λx . e : τ ′ → τ

(POW)
Γ ` s : Set(τ)

Γ ` P(s) : Set(Set(τ))

(SCOMP)
(Γ, x1 : τ1) ` e0 : τ0, (Γ, x1 : τ1) ` e1 : Boolean,

(∀2 ≤ i ≤ n . (Γ, x1 : τ1) ` ei : Boolean)

Γ ` {e0 | e1, . . . , en} : Set(τ0)
WHERE n > 0

(a) (5 points) Write a type checking rule in this style for expressions of the form e1 ⊆ e2. (This means that the
conclusion of the rule you will write has in it an expression of this form. Note that your rule must be as
general as possible, so that e1 and e2 can be any expressions that make sense.)

(b) (5 points) Write a type checking rule in this style for expressions of the form e1 ∈ e2.

(c) (10 points) Write a type checking rule for expressions of the form let x = e1 in e2. (This expression means
that e1 is evaluated and its value is bound to the variable x, and then e2 is evaluated in the resulting
environment—i.e, with x having the value of e1— and the value of the entire expression is the resulting
value.)

3. (30 points) [Concepts] [BuildTools] For purposes of this problem, a program analysis question is a careful
specification of what an analysis will determine at each program point. For example, section 2.1.1 of our
textbook [1] says that “the available expressions analysis will determine:”

“For each program point, which expressions must have already been computed, and not later
modified, on all paths to the program point.”

Other examples appear at the beginning of sections 2.1.2, 2.1.3, and 2.1.4. Note that these statements often rely
on auxiliary definitions.

For your own semester project, list the most important program analysis question(s) that the project will have to
answer. You can list up to 3 of these for your project. If you have others, you might want to write them down for
yourself, but turn hand in the most important three questions for your project. (What “most important” means is
up to you, but you might decide that these are the questions that are necessary prerequisites for answering any
other questions that your project needs answered.)

Your answer should be self-contained, so take care to define any terms that describe what your analysis will be
checking. But sure to make clear whether your question is a “may” or “must” question.

http://www.eecs.ucf.edu/~leavens/COP5021/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/COP5021/about.shtml#OutSemantics
http://www.eecs.ucf.edu/~leavens/COP5021/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/COP5021/about.shtml#OutBuildTools

3

4. (100 points) [BuildTools] Write and test a parser and the construction of abstract syntax trees for the
programming language (fragment) that you will be using in your semester project.

We recommend that you use XText (see https://www.eclipse.org/Xtext/). For working with XText, you
should read the on-line documentation in https://www.eclipse.org/Xtext/documentation/index.html,
especially the tutorials.

You can use our WHILE language project as a sample project. The Linux/Unix command to clone it from github
is:

git clone https://github.com/leavens/WhileLang.git

and the URL https://github.com/leavens/WhileLang.git can be used with tools like Eclipse.

If you aren’t using XText, then we recommend that you use a scanner generator (such as “lex”, “flex”, or “jflex”)
and a parser generator (such as “yacc” or “beaver” or ANTLR), since this will allow you to change your language
more easily as your project progresses. To avoid parsing troubles, we recommend that you use reserved words to
uniquely identify each statement (or expression, etc.). Note that the syntax of C and C++ have notorious parsing
difficulties (to some extent inherited by Java and C#), but many of these can be avoided by adding some
additional keywords. (It is okay to do this for your project, even if it means that your project’s language is
slightly different than what you originally proposed.) If you have trouble with the grammar of your language, or
with ambiguity in your grammar, see the instructor or send an email.

For this project, write both a parser and generator (in XText terms) that outputs an unparsed version of the
program. Also you will need tests to demonstrate that your parser and unparser work properly on several test
cases.

If you are using XText, turn in your .xtext file and any Java or XTend sources you use for testing your parser
and unparser. If you are not using XText, turn in the source files for the lexer, parser, and abstract syntax trees, as
well as your unparser, along with testing code. In all cases you should turn in something to show that the
unparser worked correctly in your tests.

References
[1] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program Analysis. Springer-Verlag,

1999.

http://www.eecs.ucf.edu/~leavens/COP5021/about.shtml#OutBuildTools
https://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/documentation/index.html
https://github.com/leavens/WhileLang.git

