
COP 5021 — Program Analysis March 3, 2008

Homework 3: Data Flow Analysis
Due: problems 1–9, February 18, 2008; problems 10-15, March 17, 2008.
In this homework you will learn more about data flow analysis. You will also learn more about how to do

calculational style proofs.
Turn in on paper your answers, which have been typed on a computer (no handwritten answers, please).
If you wish, you can work in groups, although I don’t recommend trying to do proofs in groups. Note

that if you do work together, you must carefully follow the course grading policies.

Section 1.7: Algorithms
Read section 1.7 of our textbook: Principles of Program Analysis [4].

1. (20 points) [Concepts] [Calculate]

Do exercise 1.6. In your proof use a calculational style (as in the handouts we provided in class [1,
Section 4.2] [2, Chapter 4], see also Gries’s article in CACM [3]), in which you justify each step.

2. (20 points) [Concepts] [Calculate]

Do exercise 1.7. Again use the calculational style for any calculations or proofs involved.

Here’s an example, developed with Neeraj Khanolkar, which shows how to do such problems in calcu-
lational style. Consider the following equations among sets drawn from a universe U , where a, b ∈ U .

X1 = {a}
X2 = {b} ∪X1 ∪X2

We can represent these equations as a function F as follows.

F : (U × U) → (U × U)
F (u1, u2) = (F1(u1, u2), F2(u1, u2))
F1(u1, u2) = {a}
F2(u1, u2) = {b} ∪ u1 ∪ u2

We wish to solve these using Chaotic Iteration. Let us represent the steps of the Chaotic Iteration
algorithm using the symbol ;. Writing ~u = (x, y) to mean u1 = x ∧ u2 = y (because when dealing
with 12-tuples it will be convenient to have a smaller formula), we can calculate as follows.

~u = ({}, {})
; 〈by definition of F2, u2 6= F2({}, {})〉

~u = ({}, {b})
; 〈by definition of F1〉

~u = ({a}, {b})
; 〈by definition of F2〉

~u = ({a}, {a, b})

At this point no more steps are possible, so the fixed point of F is ~u = ({a}, {a, b}), i.e.,

X1 = {a}
X2 = {a, b}

is a solution to the equations above.

3. (25 points) [Concepts] [Calculate]

Do exercise 1.8. Again use the calculational style for any calculations or proofs involved.

1

http://www.eecs.ucf.edu/~leavens/COP5021/grading_policy.shtml

Section 2.1: Intraprocedural Analysis
Read section 2.1 of our textbook: Principles of Program Analysis [4].

4. [Concepts] [Calculate]

This problem is about finding examples to illustrate what starting values is needed to compute a solution
by iteration, for the data flow analyses in this section.

(a) (10 points) According to the book, when using Chaotic iteration to solve for a solution of the
Available Expressions analysis (in Section 2.1.1), one should start with a tuple in which each
element is AExp?. To see why this is necessary, create an example program in the WHILE
language for which the Chaotic iteration of the function that represents that program’s Available
Expressions analysis does not get the right result, if the iteration starts with ~∅. (Hint: the next part
of this problem will be easiest if your example is very small.)

(b) (10 points) Show how, the Chaotic iteration for your example gives the right result for the Avail-
able Expressions analysis, if you start the iteration with a tuple in which each element is AExp?.

(c) (10 points) Similarly, give an example program in the WHILE language in which the chaotic
iteration for the Very Busy Expressions analysis (of section 2.1.3) does not give the right result,
if the iteration starts with ~∅.

(d) (10 points) Show how, the Chaotic iteration for your example gives the right result for the Very
Busy Expressions analysis, if you start the iteration with a tuple in which each element is AExp?.

(e) (10 points) What property of an analysis, in general, determines what starting value is appropriate
for iterations used to find a solution?

(f) (10 points; extra credit) Characterize the class of programs (perhaps syntactically) for which the
starting value of an iteration makes no difference.

5. (suggested practice) Do exercise 2.1.

6. (15 points) [Concepts] [Calculate]

Do exercise 2.2.

7. (20 points) [Concepts]

Do exercise 2.3.

8. (25 points) [Concepts] [Calculate]

Do exercise 2.4.

9. (120 points; extra credit) [Concepts] [Soundness]

Do the first part of Mini Project 2.1. Use the calculational style for your proof. (Note that this is quite
difficult to do in full detail!)

10. (50 points; extra credit) [Concepts]

Do the third part of Mini project 2.1.

Section 2.2: Theoretical Properties
Read section 2.2 of our textbook: Principles of Program Analysis [4].

11. (20 points) [Concepts] [Soundness]

Do a proof of part (iv) of lemma 2.14 using the calculational style in your proof.

2

12. [Concepts] [Semantics]

Write additions to table 2.6 to handle the following new pieces of syntax. (Hint, all of these can be
handled without changing the configurations, and in particular you do not need to introduce “errors” or
⊥ to the domain State.)

(a) (5 points) Nondeterministic (demonic) choice statements of the form S1 S2, whose meaning is
to execute either S1 or S2. (Hint: use 2 rules.)

(b) (5 points) Parallel execution statements of the form S1 || S2, whose meaning is to execute both
S1 and S2 in an interleaved fashion.

(c) (10 points) Assume statements of the form assume b, whose meaning is to do nothing if b is
true, but to refuse to execute if b is not true. That is, the configuration can be “stuck” when b is
not true.

(d) (5 points) A break statement. This breaks out of the closest surrounding while loop. You
can assume that break statements only occur inside while loops. Hint: you can use “context”
in operational semantics rules by only allowing a break to execute in certain positions of a
configuration.

(e) (5 points) A return statement, which takes no arguments (as in void methods in Java) and
simply halts execution without changing the state. Hint: you may want to think about changing
the sequence rules.

(f) (10 points) A throw statement, and a try-catch statement of the form try S1 catch S2,
where S1 and S2 are statements. where you can assume that all throw statements occur inside
a try-catch statement, and in which a throw statement jumps (without changing the state) to
the catch block of closest surrounding try-catch statement.

13. (30 points; extra credit) [Concepts] [Semantics] [Soundness]

Which of the additions to the WHILE language in the previous problem, if any, invalidate Lemma
2.14? Give a counterexample for any parts invalidated, and use the calculational style to show how the
counterexample works out. Conversely, prove the parts not invalidated by various additions using the
calculational style.

14. (20 points) [Concepts]

Do the second part of Mini Project 2.1. In your proof of correctness, assume that the formulation of
the UD analysis given in section 2.1.5 (just before section 2.2) of the textbook is correct. This will
permit an easy proof of correctness for a constructive definition of the DU analysis that builds on the
(assumed) correctness of the UD analysis.

Use the calculational style for your proofs.

15. (80 points) [Semantics] [Soundness]

Do Mini Project 2.2. Use the calculational style for your proofs.

References
[1] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic Introduction. Graduate

Texts in Computer Science. Springer-Verlag, 1998.

[2] Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and program semantics. Springer-Verlag,
NY, 1990.

[3] David Gries. Teaching calculation and discrimination: A more effective curriculum. Communications of
the ACM, 34(3):44–55, March 1991.

[4] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program Analysis. Springer-
Verlag, second printing edition, 2005.

3

