
COP 5021 — Program Analysis February 12, 2008

Homework 2: Overview of Program Analysis
Due: problems 1–2 and 4–7, January 30, 2008; remaining problems, February 11, 2008.
In this homework we will get a bit more into the different kinds of program analysis. You will also learn

how to do calculational style proofs.
Turn in (on WebCT) your answers as either plain text files with suffix .txt, MS word files with suffix

.doc, or PDF files with suffix .pdf. (We prefer to have a PDF file if that is easy for you.) Please don’t put
any spaces in your file names!

If you wish, you can work in groups, although I don’t recommend trying to do proofs in groups. Note
that if you do work together, you must carefully follow the course grading policies.

Sections 1.1-1.3: Reaching Definitions and Data Flow
Read sections 1.1-1.3 of our textbook: Principles of Programming Analysis by Flemming Nielson, Hanne
Riis Nielson, and Chris Hankin [5].

1. (10 points) [Concepts]

Describe a question that an optimizing compiler might want to answer, and a way to answer it using
information from the Reaching Definitions analysis. An example mentioned in class is the following
question. What is the set of variables that may be assigned in a program S?? This can be answered
using the set of reaching definitions from the exits of all final labels (see section 2.1 of the text) in a
program S?, as follows: {x | (x, `) ∈ RDexit(`′), `′ ∈ final(S?)), ` 6= ?}. (This might be useful for
scheduling memory writes, or for reordering statements.)

Your task is to give another example.

2. (10 points) [Concepts] [Soundness]

Consider again your answer to the previous problem. Let us call the question described in your previous
answer Q. Give one example of a statement (program) S and an answer to question Q that is incorrect
for S. Explain how such an incorrect answer for Q could only be derived from an unsafe answer to the
Reaching Definitions analysis for your statement S.

For example, if Q is the example described in the previous problem, consider the statement: [y :=
5021]1. If the answer to Q was, incorrectly, that the set of variables assigned in that statement is {}, it
could only be from an unsafe answer to the Reaching Definitions analysis, since the set {x | (x, `) ∈
RDexit(`′), `′ ∈ final(S?)), ` 6= ?} could only be empty if RDexit(1) = {(y, ?)}, which is unsafe
because (y, 1) can reach the exit of statement 1.

Your task is to explain the same kind of reasoning for your answer to the previous question.

3. (suggested practice) Do exercise 1.1 in the text.

4. (15 points; extra credit) [Concepts] What if we added arrays to the language? Precisely describe how
that would change the Reaching Definitions and give an example.

5. (15 points; extra credit) [Concepts] [Quality]

Give an example of a single language change that would make the Reaching Definitions analysis less
precise? Describe the syntax and semantics of this language change briefly, and then describe how it
affects the Reaching Definitions analysis, showing how it makes it less precise.

1

https://webct.ucf.edu/
http://www.eecs.ucf.edu/~leavens/COP5021/grading_policy.shtml

Section 1.4: Constraint Based Analysis
Read sections 1.4 of our textbook: Principles of Programming Analysis [5].

6. (20 points; extra credit) [Concepts] [Soundness]

Do the first part of exercise 1.2, showing that the solution in section 1.4 is a solution to the constraints.
(For another 10 points extra credit, you can show that it’s also a least solution.)

Use the calculational style for your demonstrations, as explained in the next section below.

Section 1.5: Abstract Interpretation
Read section 1.5 of our textbook: Principles of Programming Analysis [5].

For the proofs in this section and in the rest of the course, you must use the “calculational” style [1, 2, 4, 3]
that we will demonstrate. (Gries’s article can be obtained on campus at the URL:
http://doi.acm.org/10.1145/102868.102870.) Macros that I use to typeset such calculations
in LATEX are available from
http://www.eecs.ucf.edu/∼leavens/COP5021/latex/calculation.tex.

You are required to use this style for the proofs in this homework. Note that you don’t have to have a
beautifully typeset proof. However, this is much easier to do on a computer than by hand, so you are urged to
develop your proofs on a computer, so that you can copy unchanged parts of a formula to the next step.

To explain this better, here are a few examples of this style. A simple example that proves an approxima-
tion by use of definitions is the following.

Lemma 1 Suppose Fj is monotonic, ~RD = (RD1, . . . , RDj , . . . , RD12), and that ~RD′ is defined as
(RD1, . . . , Fj(~RD), . . . , RD12). Then ~RD v ~RD′.

Proof: Assuming the hypothesis, we calculate as follows.

~RD

= 〈by definition of ~RD〉
(RD1, . . . , RDj , . . . , RD12)

v 〈by Fj is monotonic〉
(RD1, . . . , Fj(~RD), . . . , RD12)

= 〈by definition of ~RD′〉
~RD′

The following is a slightly more advanced example of the calculation proof style. It features a calculation
done using reverse implications, so as to simplify from the more complex side in the direction of the proof
(and avoid “pulling rabbits out of the hat” [2]). It also indicates what is to be changed, by enclosing that
subformula in “quotation marks”, as an aid to the reader.

Lemma 2 Suppose ~RD = (RD1, . . . , RDj , . . . , RD12), ~RD′ = (RD1, . . . , Fj(~RD), . . . , RD12), and F

is monotonic. If Fn(~∅) = Fn+1(~∅) and F (~RD) v Fn(~∅), then F (~RD′) v Fn(~∅).

Proof: Assume the hypothesis. Then we calculate, starting from the desired result, as follows.

F (~RD′) v “Fn(~∅)”
= 〈by assumption Fn(~∅) = Fn+1(~∅)〉

F (~RD′) v “Fn+1(~∅)”
= 〈by definition of iteration of a function〉

F (~RD′) v F (Fn(~∅))
⇐ 〈by monotonicity of F 〉

~RD′ v Fn(~∅)

2

http://doi.acm.org/10.1145/102868.102870
http://www.eecs.ucf.edu/~leavens/COP5021/latex/calculation.tex

⇐ 〈by transitivity〉
~RD′ v F (~RD) ∧ F (~RD) v Fn(~∅)

= 〈by assumption F (~RD) v Fn(~∅)〉
~RD′ v F (~RD)

⇐ 〈by Lemma 7 (not shown here)〉
~RD v F (~RD)

= 〈by F is monotonic〉
true

7. (15 points) [Concepts]

Do exercise 1.3 in the text. Note that α and γ are considered to be functions from sets to sets, as in
section 1.5.

8. (80 points) [Concepts]

Do exercise 1.4 in the text; however to avoid extra work, for the first part of this exercise, you only
have to show that

α(Gj(γ(RD1), . . . , γ(RD12))) ⊆ Fj(RD1, . . . , RD12)

for j = 4, 5, 6, i.e., for G4 = Gexit(2), G5 = Gentry(3), and G6 = Gexit(3).

For the sake of clarity, note the following definitions.
F is defined by F (~RD) = (F1(~RD), . . . , F12(~RD)), where ~RD = (RD1, . . . , RD12) and the Fj are

defined, as in Section 1.3, as follows.

Fentry(1)(~RD) = F1(~RD) = {(x, ?), (y, ?), (z, ?)}
Fexit(1)(

~RD) = F2(~RD) = (RD1 \ {(y, `) | ` ∈ Lab}) ∪ {(y, 1)}
Fentry(2)(~RD) = F3(~RD) = RD2

Fexit(2)(
~RD) = F4(~RD) = (RD3 \ {(z, `) | ` ∈ Lab}) ∪ {(z, 2)}

Fentry(3)(~RD) = F5(~RD) = RD4 ∪ RD10

Fexit(3)(
~RD) = F6(~RD) = RD5

Fentry(4)(~RD) = F7(~RD) = RD6

Fexit(4)(
~RD) = F8(~RD) = (RD7 \ {(z, `) | ` ∈ Lab}) ∪ {(z, 4)}

Fentry(5)(~RD) = F9(~RD) = RD8

Fexit(5)(
~RD) = F10(~RD) = (RD9 \ {(y, `) | ` ∈ Lab}) ∪ {(y, 5)}

Fentry(6)(~RD) = F11(~RD) = RD6

Fexit(6)(
~RD) = F12(~RD) = (RD11 \ {(y, `) | ` ∈ Lab}) ∪ {(y, 6)}

G is defined by G(~CS) = (G1(~CS), . . . , G12(~CS)), where for ~CS = (CS1, . . . , CS12), the Gj are
defined as in Section 1.5.

3

Gentry(1)(~CS) = G1(~CS) = {((x, ?), (y, ?), (z, ?))}
Gexit(1)(

~CS) = G2(~CS) = {tr : (y, 1) | tr ∈ CS1}
Gentry(2)(~CS) = G3(~CS) = CS2

Gexit(2)(
~CS) = G4(~CS) = {tr : (z, 2) | tr ∈ CS3}

Gentry(3)(~CS) = G5(~CS) = CS4 ∪ CS10

Gexit(3)(
~CS) = G6(~CS) = CS5

Gentry(4)(~CS) = G7(~CS) = CS6

Gexit(4)(
~CS) = G8(~CS) = {tr : (z, 4) | tr ∈ CS7}

Gentry(5)(~CS) = G9(~CS) = CS8

Gexit(5)(
~CS) = G10(~CS) = {tr : (y, 5) | tr ∈ CS9}

Gentry(6)(~CS) = G11(~CS) = CS6

Gexit(6)(
~CS) = G12(~CS) = {tr : (y, 6) | tr ∈ CS11}

Furthermore, the following definitions are given in Section 1.5.

α(CS) = {(x, SRD(tr)(x)) | x ∈ DOM(tr) ∧ tr ∈ CS}
γ(RD) = {tr | (∀x ∈ DOM(tr) :: (x, SRD(tr)(x)) ∈ RD)}
~α(CS1, . . . , CS12) = (α(CS1), . . . , α(CS12))
~γ(RD1, . . . , RD12) = (γ(RD1), . . . , γ(RD12))

Section 1.6: Type and Effect Systems
Read section 1.6 of our textbook: Principles of Programming Analysis [5].

9. (10 points) [Concepts]

Using the type system specified in Table 1.2, what is the least type of the following program?

[q := 0]1; if [r > q]2 then [x := r]3 else [y := r]4

10. (10 points) [Concepts]

Using the type system specified in Table 1.3, what is the least type of the following program?

[q := 0]1; if [r > q]2 then [x := r]3 else [y := r]4

Section 1.7: Algorithms
Read section 1.7 of our textbook: Principles of Programming Analysis [5].

11. (suggested practice) Do exercise 1.7.

12. (suggested practice) Do exercise 1.8.

Section 1.8: Transformations
Read section 1.8 of our textbook: Principles of Programming Analysis [5].

13. (suggested practice) Do exercise 1.9.

14. (15 points; extra credit) [Concepts]

Do exercise 1.10.

4

References
[1] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic Introduction. Graduate

Texts in Computer Science. Springer-Verlag, 1998.

[2] Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and program semantics. Springer-Verlag,
NY, 1990.

[3] David Gries. Teaching calculation and discrimination: A more effective curriculum. Communications of
the ACM, 34(3):44–55, March 1991.

[4] David Gries and Fred B. Schneider. A Logical Approach to Discrete Math. Texts and Monographs in
Computer Science. Springer-Verlag, New York, NY, 1994.

[5] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program Analysis. Springer-
Verlag, second printing edition, 2005.

5

