
1

Spring, 2008 Name:

COP 4020 — Programming Languages 1

Test on Declarative Programming Techniques

Special Directions for this Test
This test has 5 questions and pages numbered 1 through 8.

This test is open book and notes.
If you need more space, use the back of a page. Note when you do that on the front.
Before you begin, please take a moment to look over the entire test so that you can budget your time.
Clarity is important; if your programs are sloppy and hard to read, you may lose some points. Correct syntax also

makes a difference for programming questions.
When you write Oz code on this test, you may use anything in the declarative model (as in chapters 2–3 of our

textbook). So you must not use imperative features (such as cells and assignment) or the library functions IsDet and
IsFree.

You are encouraged to define functions or procedures not specifically asked for if they are useful to your program-
ming; however, if they are not in the Oz base environment, then you must write them into your test.

For Grading
Problem Points Score

1 20
2 10
3 20
4 25
5 25



2

1. (20 points) [UseModels] Write a function

SumValues: <fun {$ <fun {$ Int}: Int> Int Int}: Int>

that takes a function F, and two integers LB and UB, such that LB < UB, and which returns the sum of {F I}
for all I between LB and UB (inclusive).

Your solution must have iterative behavior, and must be written using tail recursion. Don’t use any higher-order
functions or the Oz for loop syntax in your solution. (You are supposed to know what these directions mean.)

The following are examples, that use the Test method from the homework.

local
fun {MyF I} 10*I end

in
{Test {SumValues MyF 1 3} ’==’ 60}

end
{Test {SumValues fun {$ I} 3 end 1 10} ’==’ 30}
{Test {SumValues fun {$ I} I end 1 10} ’==’ 55}
{Test {SumValues fun {$ I} I end 2 10} ’==’ 54}
{Test {SumValues fun {$ I} vals(3 7 9 2).I end 1 4} ’==’ 21}
{Test {SumValues fun {$ I} I*I+1 end 2 10} ’==’ 393}



3

2. (10 points) [UseModels] Write a function

VoteFor: <fun {$ <List Atom>}: <List <Pair Atom Atom>>

that takes a list of atoms, Candidates, and produces a list of pairs of atoms. Each of the pairs has the atom
vote as its first element and the corresponding element of the argument list as its second element. The
following are examples, that use the Test method from the homework.

{Test {VoteFor nil} ’==’ nil}
{Test {VoteFor [clinton obama mccain]}
’==’ [vote#clinton vote#obama vote#mccain]}

{Test {VoteFor [john hillary barak ralph]}
’==’ [vote#john vote#hillary vote#barak vote#ralph]}

{Test {VoteFor [uptown downtown midtown motown funkytown]}
’==’ [vote#uptown vote#downtown vote#midtown vote#motown vote#funkytown]}



4

3. (20 points) [UseModels] Write a function

Positive: <fun {$ <List Int>}: <List Int>>

that takes a list of integers Nums and produces a list that contains just the strictly positive elements of Nums, in
their original order. The following are examples, that use the Test method from the homework. (Note that ~3
is the Oz way of writing negative numbers, such as −3.)

{Test {Positive nil} ’==’ nil}
{Test {Positive [~1]} ’==’ nil}
{Test {Positive [3 7 ~1]} ’==’ [3 7]}
{Test {Positive [~3 3 7 ~1]} ’==’ [3 7]}
{Test {Positive [~2 0 5 ~3 3 7 ~1]} ’==’ [5 3 7]}
{Test {Positive [0 5 ~3 3 7 ~1]} ’==’ [5 3 7]}



5

4. (25 points) [UseModels] This problem is about the following “statement and expression” grammar, which you
have seen previously in the “Following the Grammar” handout and the homework.

〈Statement〉 ::=
expStmt(〈Expression〉)

| assignStmt(〈Atom〉 〈Expression〉)
| ifStmt(〈Expression〉 〈Statement〉)

〈expression〉 ::=
varExp(〈Atom〉)

| numExp(〈Number〉)
| equalsExp(〈Expression〉 〈Expression〉)
| beginExp(〈List Statement〉 〈Expression〉)

Write a function

NegateIfs: <fun {$ <Statement>}: <Statement>

that takes a statement Stmt, and returns a statement that is just like Stmt except that all ifStmt statements
of the form ifStmt(E S) that occur anywhere within Stmt are replaced by
ifStmt(equalsExp(E varExp(false)) S). This process occurs recursively for all subparts of Stmt,
even within E and S. The following are examples using the Test function from the homework.

{Test {NegateIfs expStmt(numExp(3))} ’==’ expStmt(numExp(3))}
{Test {NegateIfs expStmt(varExp(y))} ’==’ expStmt(varExp(y))}
{Test {NegateIfs expStmt(equalsExp(varExp(y) varExp(z)))}
’==’ expStmt(equalsExp(varExp(y) varExp(z)))}

{Test {NegateIfs assignStmt(x numExp(3))} ’==’ assignStmt(x numExp(3))}
{Test {NegateIfs ifStmt(varExp(true)

assignStmt(x numExp(3)))}
’==’ ifStmt(equalsExp(varExp(true) varExp(false))

assignStmt(x numExp(3)))}
{Test {NegateIfs expStmt(beginExp(nil numExp(3)))}
’==’ expStmt(beginExp(nil numExp(3)))}

{Test {NegateIfs
expStmt(beginExp([ifStmt(varExp(true)

assignStmt(x numExp(3)))
assignStmt(y numExp(4))]

varExp(y)))}
’==’ expStmt(beginExp([ifStmt(equalsExp(varExp(true) varExp(false))

assignStmt(x numExp(3)))
assignStmt(y numExp(4))]

varExp(y)))}
{Test {NegateIfs

ifStmt(beginExp([ifStmt(varExp(true)
assignStmt(x numExp(3)))

assignStmt(y numExp(4))]
varExp(y))

assignStmt(q beginExp([ifStmt(varExp(m)
expStmt(numExp(7)))]

varExp(m))))}
’==’ ifStmt(equalsExp(beginExp([ifStmt(equalsExp(varExp(true) varExp(false))

assignStmt(x numExp(3)))
assignStmt(y numExp(4))]

varExp(y))
varExp(false))

assignStmt(q beginExp([ifStmt(equalsExp(varExp(m) varExp(false))
expStmt(numExp(7)))]

varExp(m))))}

There is space for your answer on the next page.



6

Put your answer to the NegateIfs problem here.



7

5. (25 points) [UseModels] This problem is about “music” defined by the following grammar.

〈Music〉 ::=
pitch(〈Number〉)

| chord(〈List Music〉)
| sequence(〈List Music〉)

Write a function

Transpose: <fun {$ <Music> <Number>}: <Music>

that takes a music value, Song, and a number, Delta, and produces a music value that is just like Song, but
in which each number has been replaced by that number plus Delta. (This is what musicians call
transposition, hence the name.) The following are examples using the Test function from the homework.

{Test {Transpose pitch(3) 7} ’==’ pitch(10)}
{Test {Transpose pitch(10) 5} ’==’ pitch(15)}
{Test {Transpose chord(nil) ~3} ’==’ chord(nil)}
{Test {Transpose chord([pitch(1) pitch(5) pitch(8)]) 2}
’==’ chord([pitch(3) pitch(7) pitch(10)])}

{Test {Transpose sequence(nil) ~1} ’==’ sequence(nil)}
{Test {Transpose sequence([pitch(1) pitch(5) pitch(8)]) 2}
’==’ sequence([pitch(3) pitch(7) pitch(10)])}

{Test {Transpose
sequence([chord([pitch(1) pitch(5) pitch(8)])

chord([pitch(3) pitch(7) pitch(0)])
chord([pitch(7) pitch(5) pitch(9)])])

1}
’==’ sequence([chord([pitch(2) pitch(6) pitch(9)])

chord([pitch(4) pitch(8) pitch(1)])
chord([pitch(8) pitch(6) pitch(10)])])}

{Test {Transpose
chord([sequence([chord([pitch(1) pitch(5) pitch(8)])

chord([pitch(3) pitch(7) pitch(0)])
chord([pitch(7) pitch(5) pitch(9)])])

sequence([pitch(1) pitch(1)])
chord([sequence(nil) sequence([pitch(3)])])])

1}
’==’ chord([sequence([chord([pitch(2) pitch(6) pitch(9)])

chord([pitch(4) pitch(8) pitch(1)])
chord([pitch(8) pitch(6) pitch(10)])])

sequence([pitch(2) pitch(2)])
chord([sequence(nil) sequence([pitch(4)])])])}

{Test {Transpose
sequence([chord([sequence([chord([pitch(1) pitch(5) pitch(8)])

chord([pitch(3) pitch(7) pitch(0)])
chord([pitch(7) pitch(5) pitch(9)])])

sequence([pitch(1) pitch(1)])
chord([sequence(nil) sequence([pitch(3)])])])

chord([pitch(1) pitch(9)])])
1}

’==’ sequence([chord([sequence([chord([pitch(2) pitch(6) pitch(9)])
chord([pitch(4) pitch(8) pitch(1)])
chord([pitch(8) pitch(6) pitch(10)])])

sequence([pitch(2) pitch(2)])
chord([sequence(nil) sequence([pitch(4)])])])

chord([pitch(2) pitch(10)])])}

There is space for your answer on the next page.



8

Put your answer to the Transpose problem here.


