
1

Fall, 2008 Name:

COP 4020 — Programming Languages I

Test on the Declarative Model

Special Directions for this Test
This test has 10 questions and pages numbered 1 through 6.

This test is open book and notes.
If you need more space, use the back of a page. Note when you do that on the front.
Before you begin, please take a moment to look over the entire test so that you can budget your time.
Clarity is important; if your programs are sloppy and hard to read, you may lose some points. Correct syntax also

makes a difference for programming questions.
When you write Oz code on this test, you may use anything we have seen in chapters 1–2 of our textbook. But

unless specifically directed, you should not use imperative features (such as cells) or the library functions IsDet and
IsFree. Problems relating to the kernel syntax can only use features of the kernel language.

You are encouraged to define functions or procedures not specifically asked for if they are useful to your program-
ming; however, if they are not in the Oz base environment, then you must write them into your test.

For Grading
Problem Points Score

1 5
2 15
3 5
4 10
5 15
6 5
7 10
8 10
9 15

10 10



2

The first three problems ask for sets of free or bound variable identifiers that occur bound in the statement above.
Write the entire requested set in brackets. For example, write {V,W}, or if the requested set is empty, write {}.

1. Consider the following Oz statement in the kernel language.

local A in
{F A B}

end

(a) (3 points) [Concepts] Write the entire set of the variable identifiers that occur free in the statement above.

(b) (2 points) [Concepts] Write the entire set of the variable identifiers that occur bound in the statement
above.

2. Consider the following Oz statement in the kernel language.

Q = proc {$ BT P X ?R}
case BT of

btree(val:N left:C right:D) then
local Temp in

{Add P N Temp}
local CR in

{Q C Temp Y CR}
local Z in

{Q D CR Y R}
end

end
end

else R = N
end

end

(a) (6 points) [Concepts] Write the entire set of the variable identifiers that occur free in the statement above.

(b) (9 points) [Concepts] Write the entire set of the variable identifiers that occur bound in the statement
above.



3

3. [Concepts] Consider the following Java method declaration.

public void bake(int a) {
s = sift(a);
cook(s, 350);

}

(a) (3 points) Write below, in set brackets, the entire set of variable identifiers that occur free in the Java code
above.

(b) (2 points) Write below, in set brackets, the entire set of variable identifiers that occur bound in the Java
code above.

4. Consider the following Oz code.

local Sum in
Sum = proc {$ N Acc ?R}

if N >= 0
then {Sum N-1 Acc+N R}
else R = Acc
end

end
local Res in

{Sum 5 0 Res}
{Browse Res}

end
end

(a) (2 points) [Concepts] When the above code runs, what output, if any, appears in the browser?

(b) (5 points) [Concepts] Does the closure formed for the proc value expression on lines 2–7 include an
environment that has a binding for Sum? If so, briefly explain why, if not, then say why such a binding is
not needed.

(c) (3 points) [Concepts] Is the call statement {Sum N-1 Acc+N R} in the declarative kernel language? If
not, briefly explain why it is not.



4

5. (15 points) [Concepts] Desugar the following Oz code into kernel syntax by expanding all syntactic sugars.
(Assume that the identifier Z, and the function identifiers Dec and Minus are declared elsewhere.)

fun {Dec N} {Minus N 1} end
Z={Dec 3}

6. (5 points) [Concepts] Which of the following correctly states the connection between static scoping and
closures in Oz. (Circle the letter of the correct statement.)

(a) Closures contain an environment, which allows free variable identifiers appearing in the body of a
procedure to refer to the location (store variable) associated with the most recent declaration of those
identifiers that is still active.

(b) Closures contain an environment, which allows bound variable identifiers appearing in the body of a
procedure to refer to the location (store variable) associated with the most recent decaration of those
identifiers that is still active.

(c) Closures contain an environment, which allows bound variable identifiers appearing in the body of a
procedure to refer to the location (store variable) associated with the closest textually surrounding
decaration of those identifiers.

(d) Closures contain an environment, which allows free variable identifiers appearing in the body of a
procedure to refer to the location (store variable) associated with the closest textually surrounding
decaration of those identifiers.



5

7. (10 points) [Concepts] What happens when the following code executes in Oz? Briefly explain why that
happens.

local Swap X Y in
X = 7
Y = 5
Swap = proc {$ A B}

local Temp in
Temp = A
A = B
B = Temp

end
end

{Swap X Y}
{Browse ’X is ’#X}

end

8. (10 points) [Concepts] What is the output, if any, of the following code in Oz? Briefly explain why that output
appears.

local P HM C in
P = district(state: fl county: orange rep: dem(congr))
C = seminole
case P of

place(state: S county: C rep: dem(D)) then {Browse first#S#C#D}
[] district(state: S county: C) then {Browse second#S#C}
[] district(state: S county: C rep: R) then {Browse third#S#C#R}
[] district(state: S county: C rep: dem(D)) then {Browse fourth#S#C#D}
else {Browse none(C)}
end

end



6

9. (15 points) [Concepts] Give an example of a syntactic sugar or linguistic abstraction in Java, C, C++, or C#,
stating clearly: (a) the language, and (b) what desugars into what (e.g., what statement desugars into what other
statement), and (c) giving a rule or a concrete example that explains the desugaring.

10. (10 points) [Concepts] What happens when the following program executes in Oz? Briefly explain your answer.

local X in
try

try
raise first(X) end
X = 8

catch first(Y) then
X = 9
{Browse caughtFirst(xval: X yval: Y)}
raise second(Y) end

finally
{Browse third(X)}

end
catch second(Z) then

{Browse caughtSecond(xval: X zval: Z)}
end

end


