
1

Fall, 2007 Name:

COP 4020 — Programming Languages 1

Makeup Test on Declarative Programming Techniques

Special Directions for this Test
This test has 8 questions and pages numbered 1 through 9.

This test is open book and notes.
If you need more space, use the back of a page. Note when you do that on the front.
Before you begin, please take a moment to look over the entire test so that you can budget your time.
Clarity is important; if your programs are sloppy and hard to read, you may lose some points. Correct syntax also

makes a difference for programming questions.
When you write Oz code on this test, you may use anything in the declarative model (as in chapters 2–3 of our

textbook). So you must not use imperative features (such as cells and assignment).
You are encouraged to define functions or procedures not specifically asked for if they are useful to your program-

ming; however, if they are not in the Oz base environment, then you must write them into your test. (This means you
can use things in the Oz base environment such as Map, FoldR, Filter, Append, etc.)

For Grading
Problem Points Score

1 5
2 10
3 5
4 10
5 10
6 10
7 25
8 25



2

1. (5 points) In the following statement, written in the kernel language of the declarative model, circle each free
variable identifier occurrence (and only the free variable identifier occurrences).

ProdFuns = proc {$ Ls Acc Return}
case Ls of
Hd | Tail then local Temp in

Temp = proc {$ X R} {Prod Hd X R} end
local Temp2 in

Temp2 = Temp | Acc
{ProdFuns Tail Temp2 Return}

end
end

else {Reverse Acc Return}
end

end

2. (10 points) The following is another copy of the same kernel language code as above. On the following copy,
circle each bound variable identifier occurrence (and only the bound variable identifier occurrences).

ProdFuns = proc {$ Ls Acc Return}
case Ls of
Hd | Tail then local Temp in

Temp = proc {$ X R} {Prod Hd X R} end
local Temp2 in

Temp2 = Temp | Acc
{ProdFuns Tail Temp2 Return}

end
end

else {Reverse Acc Return}
end

end



3

3. (5 points) Desugar the following Oz code into kernel syntax by expanding all syntactic sugars. (Assume that
Times is a function that is declared elsewhere.)

fun {By2 I}
{Times I 2}

end



4

4. (10 points) Write a function

EvenNumbers: <fun {$ <List Integer>}: <List Integer>

that takes a list of integers LoN and returns a list of the even integers in LoN, in their original order. The
following are examples, that use the Test procedure from the homework.

{Test {EvenNumbers nil} ’==’ nil}
{Test {EvenNumbers [2]} ’==’ [2]}
{Test {EvenNumbers [3]} ’==’ nil}
{Test {EvenNumbers [1 2 3 4 5 6 7 6 2 3 1]} ’==’ [2 4 6 6 2]}
{Test {EvenNumbers [2 3 4 5 6 7 6 2 3 1]} ’==’ [2 4 6 6 2]}
{Test {EvenNumbers [3 4 5 6 7 6 2 3 1]} ’==’ [4 6 6 2]}



5

5. (10 points) Write a function

SumSquares: <fun {$ <List Number>}: <Number>

that takes a list of numbers, LoN, and returns the sum of their squares.

Your solution must have iterative behavior, and must be written using tail recursion. Don’t use any higher-order
functions in your solution. (You are supposed to know what these directions mean.)

The following are examples, that use the Test procedure from the homework.

{Test {SumSquares nil} ’==’ 0}
{Test {SumSquares [5]} ’==’ 25}
{Test {SumSquares [5 10]} ’==’ 125}
{Test {SumSquares [1 2 3 4]} ’==’ 30}
{Test {SumSquares [7 5 10 12 ~7 ~5 ~10 ~12]} ’==’ 636}
{Test {SumSquares [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]} ’==’ 0}

6. (10 points) Write a definition of SumSquares that solves the problem given above, but using FoldL. Do this
by filling in the blanks in the following code outline. (Note that these blanks may be larger in size than you
need.)

fun {SumSquares LoN}
{FoldL ________________________________________________________

________________________________________________________
________________________________________________________

}
end



6

7. (25 points) This problem is about “sales data records.” Sales data records are defined by the following
grammar.

〈SalesData〉 ::=
store(address: 〈String〉 amounts: 〈List 〈Int〉〉)

| group(name: 〈String〉 members: 〈List 〈SalesData〉〉)

Write a function

NewAddress: <fun {$ <SalesData> <String> <String>}: <SalesData>

that takes a sales data record SD, two strings New and Old, and returns a sales data record that is just like SD
except that all store records in SD whose address field’s value is (== to) Old in SD are changed to New in the
result.

The following are examples using the Test function from the homework.

{Test {NewAddress group(name: "StartUP!" members: nil)
"Downtown" "50 Washington Ave."}

’==’ group(name: "StartUP!" members: nil)}
{Test {NewAddress store(address: "The Mall" amounts: [10 32 55])

"110 Main St." "The Mall"}
’==’ store(address: "110 Main St." amounts: [10 32 55])}

{Test {NewAddress
group(name: "Target"

members: [store(address: "The Mall" amounts: [10 32 55])])
"NewAddress" "OldAddress"}

’==’ group(name: "Target"
members: [store(address: "The Mall" amounts: [10 32 55])])}

{Test {NewAddress
group(name: "Target"

members: [store(address: "The Mall" amounts: [10 32 55])
store(address: "Downtown" amounts: [4 0 2 0])])

"253 Sears Tower" "The Mall"}
’==’ group(name: "Target"

members: [store(address: "253 Sears Tower" amounts: [10 32 55])
store(address: "Downtown" amounts: [4 0 2 0])])}

{Test {NewAddress
group(name: "ACME"

members:
[group(name: "Robucks"

members: [store(address: "The Mall" amounts: [99])
store(address: "Maple St." amounts: [32])])

group(name: "Target"
members: [store(address: "The Mall" amounts: [10 55])

store(address: "Downtown" amounts: [4])])])
"High St." "The Mall"}

’==’ group(name: "ACME"
members:

[group(name: "Robucks"
members: [store(address: "High St." amounts: [99])

store(address: "Maple St." amounts: [32])])
group(name: "Target"

members: [store(address: "High St." amounts: [10 55])
store(address: "Downtown" amounts: [4])])])}

There is space for your answer on the next page.



7

Put your answer to the NewAddress problem here.



8

8. (25 points) This problem is about “expressions” (that encode the abstract syntax of a subset of Oz that
corresponds to the one-argument “λ-calculus”).

〈Expression〉 ::=
varIdExp(〈Atom〉)

| funExp(〈Atom〉 〈Expression〉)
| applyExp(〈Expression〉 〈Expression〉)

Write a function

FreeVarIds: <fun {$ <Expression>}: <List <Atom>>

that takes an expression Exp and returns a list of atoms from each free variable identifier occurrence in Exp.
(The returned list can have duplicate elements.) An atom X should be in the result just when Exp contains a
record of the form varIdExp(X), and that record is not nested within a record of form funExp(X E)
(since that declares X as a formal parameter).

The following are examples using the Test function from the homework. Note that your answer should
produce a list with the same elements, but the elements need not be in the same order as shown for the test
outputs.

{Test {FreeVarIds varIdExp(z)} ’==’ [z]}
{Test {FreeVarIds varIdExp(q)} ’==’ [q]}
{Test {FreeVarIds applyExp(varIdExp(q) varIdExp(z))} ’==’ [q z]}
{Test {FreeVarIds applyExp(varIdExp(x) varIdExp(x))} ’==’ [x x]}
{Test {FreeVarIds funExp(x varIdExp(x))} ’==’ nil}
{Test {FreeVarIds funExp(z applyExp(varIdExp(q) varIdExp(z)))} ’==’ [q]}
{Test {FreeVarIds funExp(q applyExp(varIdExp(q) varIdExp(z)))} ’==’ [z]}
{Test {FreeVarIds funExp(y

applyExp(varIdExp(q) varIdExp(z)))}
’==’ [q z]}

{Test {FreeVarIds funExp(q
funExp(y

applyExp(varIdExp(q) varIdExp(z))))}
’==’ [z]}

{Test {FreeVarIds funExp(z
funExp(q

funExp(y
applyExp(varIdExp(q) varIdExp(z)))))}

’==’ nil}
{Test {FreeVarIds applyExp(varIdExp(x)

funExp(x varIdExp(x)))}
’==’ [x]}

{Test {FreeVarIds applyExp(funExp(x varIdExp(x))
varIdExp(x))}

’==’ [x]}
{Test {FreeVarIds applyExp(funExp(x varIdExp(x))

varIdExp(y))}
’==’ [y]}

{Test {FreeVarIds
applyExp(

applyExp(
funExp(a funExp(b funExp(y

applyExp(varIdExp(a) varIdExp(b)))))
applyExp(funExp(x varIdExp(x))

varIdExp(y)))
applyExp(varIdExp(q) varIdExp(z)))}

’==’ [y q z]}

There is space for your answer on the next page.



9

Put your answer to the FreeVarIds problem here.


