
COP 4020 — Programming Languages I April 9, 2013

Homework 5: Advanced Haskell Topics
See Webcourses2 and the syllabus for due dates.

Purpose
In this homework you will consolodate your knowledge of functional programming, and get a taste of two
advanced techniques: making an instance of a tyep class and using declarative parallelism [UseModels]
[Concepts].

Directions
Answers to English questions should be in your own words; don’t just quote text from other sources.
We will take some points off for: code with the wrong type or wrong name, duplicated code, code with extra
unnecessary cases, or code that is excessively hard to follow. You should always assume that the inputs
given to each function will be well-typed, thus your code should not have extra cases for inputs that are not
of the proper type. Make sure your code has the specified type by including the given type declaration with
your code. Avoid duplicating code by using helping functions, library functions (when not prohibited in the
problems), or by using syntactic sugars and local definitions (using let and where). It is a good idea to
check your code for these problems before submitting.
For this homework we suggest that you work individually. (However, per the course’s grading policy you
can work in a group if you wish, provided that carefully follow the policy on cooperation described in the
course’s grading policy.)
Don’t hesitate to contact the staff if you are stuck at some point.

What to Turn In
For English answers, please paste your answer into the assignment as a “text answer” in the problem’s
“assignment” on Webcourses. For a problem with a mix of code and English, follow both of the above.
For each problem that requires code, turn in (on Webcourses2) your code and output of testing with our test
cases. Please upload code as a plain (text) file with the name given in the problem or testing file and with the
suffix .hs or .lhs (that is, do not give us a Word document or a PDF file for the code). Also paste the output
from our tests into the Comment box for that “assignment”.
For all Haskell programs, you must run your code with GHC. See the course’s Running Haskell page for
some help and pointers on getting GHC installed and running. Your code should compile properly (and thus
type check); if it doesn’t, then you probably should keep working on it. Email the staff with your code file if
you need help getting it to compile or have trouble understanding error messages. If you don’t have time to
get your code to compile, at least tell us that you didn’t get it to compile in your submission.
You are encouraged to use any helping functions you wish, and to use Haskell library functions, unless the
problem specifically prohibits that.

What to Read
In the tutorial Learn You a Haskell for Great Good! chapter 8 covers type classes.
See Simon Marlow’s “Parallel and Concurrent Programming in Haskell,” for more about parallel
programming in Haskell.
Use the Haskell 2010 Report as a guide to the details of Haskell.
See also the course code examples page (and the course resources page).

https://webcourses2c.instructure.com/
http://www.eecs.ucf.edu/~leavens/COP4020/syllabus.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutUseModels
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/COP4020/grading_policy.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/grading_policy.shtml#coop
http://www.eecs.ucf.edu/~leavens/COP4020/grading_policy.shtml#coop
http://www.eecs.ucf.edu/~leavens/COP4020/contact.shtml
https://webcourses2c.instructure.com/
http://www.eecs.ucf.edu/~leavens/COP4020/running_haskell.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/contact.shtml
http://learnyouahaskell.com/chapters
http://community.haskell.org/~simonmar/par-tutorial.pdf
http://www.haskell.org/haskellwiki/Language_and_library_specification#The_Haskell_2010_report
http://www.eecs.ucf.edu/~leavens/COP4020/examples/index.html
http://www.eecs.ucf.edu/~leavens/COP4020/resources.shtml

2

Problems

Type Classes and Instances
1. (5 points) [Concepts] Function types (such as (a -> b) or (Int -> Bool)) in Haskell are not

instances of the type class Eq. Thus when you try to evaluate an == expression where the expressions on
either side have a function type, you see something like the following:

Prelude> (\x -> x+1) == (+1)

<interactive>:4:13:
No instance for (Eq (a0 -> a0))

arising from a use of ‘==’
Possible fix: add an instance declaration for (Eq (a0 -> a0))
In the expression: (\ x -> x + 1) == (+ 1)
In an equation for ‘it’: it = (\ x -> x + 1) == (+ 1)

Why is it that function types are not instances of the Eq class? Briefly explain your answer.

2. (5 points) [Concepts] Function types are also not instances of the type class Show in Haskell. Consider
the following interaction with the interpreter:

Prelude> (\y -> y*2)

<interactive>:5:1:
No instance for (Show (a0 -> a0))

arising from a use of ‘print’
Possible fix: add an instance declaration for (Show (a0 -> a0))
In a stmt of an interactive GHCi command: print it

Is it a sensible design for Haskell to not make function types an instance of the Show class? Briefly
explain your answer.

3

3. (30 points) [UseModels] This question concerns writing instances of type classes.

Consider the module GraphDisplay below. This module defines and exports two data types: Graph and
Display. These data types are both record types that have a function field.

-- $Id: GraphDisplay.hs,v 1.2 2013/03/24 09:40:54 leavens Exp $

module GraphDisplay where
data Graph = Section {size :: Int, center :: (Int,Int),

fun :: (Int -> Int)}
data Display = Grid {delta :: Int, middle :: (Int,Int),

points :: ((Int,Int) -> Char)}

point = '*'

nothing = ' '

graph2display :: Graph -> Display

graph2display (Section {size = n, center = (x,y), fun = f}) =

Grid {delta = n `div` 2, middle = (x,y),

points = (\(i,j) -> if f i == j then point else nothing)}

Your task in this problem is to write a module GraphDisplayInstance that makes the type Display an
instance of the standard type class Show. To define an instance of Show, you will have to define the
function show inside an instance declaration of the following form. (Your code would follow the code
shown below.)

module GraphDisplayInstance where
import GraphDisplay

For a Display of the form (Grid {delta = d, middle = (x,y), points = g}), show should return
a String that consists of a newline character (\n) followed by 2× d+ 1 lines, one for each j in the range
y+d down to y-d, and then 2 lines that display the x coordinate scale. For each j in the range y+d down
to y-d, the corresponding line consists of (from left to right):

• either two blanks, or, for the row corresponding to y, the characters “y ” (y followed by a blank),

• the characters of the numeral j, padded to the left with blanks so that they are the same size (in
number of characters) as all the other such numeric labels,

• a character for each i in the range [(x-d) .. (x+d)], which is the result of applying g to the pair
(i, j).

• a newline character.

After these lines for each j, the result string contains 2 lines that display the x coordinate scale. The first
of these two lines consists of:

• 2 blanks, and then

• the characters of the numeral i, for each i in the list [(x-d), ((x-d)+xsize) .. (x+d)], where
xsize is the maximum size of the characters in the numbers that represent [(x-d) .. (x+d)].
These numerals should be padded on hte left, so that the rightmost digit of the number lines up in
the column corresponding to i.

• a newline character,

• Blanks followed by the string "x\n", so that the letter “x” appears in the column corresponding to
the number x.

There are test cases contained in the file GraphDisplayInstanceTests.hs, which is shown in Figures 1
to 4. As usual, to run our tests, use the GraphDisplayInstanceTests.hs file. To make that work, you
have to put your code in a module GraphDisplayInstance, which will need to be in a file named
GraphDisplayInstance.hs (or the same with a .lhs suffix), in the same directory as our testing file
and Testing.lhs.

4

As specified on the first page of this homework, turn in both your code file and the output of your
testing. (The code file should be uploaded to Webcourses2, and the test output should be pasted in to the
comments box for that assignment.)

5

-- $Id: GraphDisplayInstanceTests.hs,v 1.4 2013/03/31 21:14:30 leavens Exp $

module GraphDisplayInstanceTests where
import GraphDisplayInstance

import GraphDisplay

import Control.Monad (forM_)

import Testing

main :: IO ()

main = do heading

run_tests tests

heading :: IO ()

heading = do startTesting "GraphDisplayInstancesTests $Revision: 1.4 $"

debugIt :: IO ()

debugIt = do forM_ graphs (\(title, gr) -> do putStr title

print (graph2display gr))

graphs :: [(String,Graph)]
graphs = [("y=3", Section {size = 4, center = (0,3), fun = (_ -> 3)})

,("y=x", Section {size = 4, center = (0,0), fun = id})
,("y=x+3", Section {size = 10, center = (-3,0), fun = (\x -> x+3)})

,("y=square x", Section {size = 24, center = (0,9), fun = square})

,("y=cube x", Section {size = 30, center = (6,6), fun = cube})

,("y=sine x", Section {size = 20, center = (0,0), fun = sine})

]

mbv :: Maybe b -> b

mbv mb = case mb of
Just x -> x

Nothing -> undefined

run2string :: String -> String
run2string title = show (graph2display (mbv (lookup title graphs)))

tests :: [TestCase String]
tests = [eqTest (run2string "y=3")

"==" ("\n 5 \n"

++" 4 \n"

++"y 3*****\n"

++" 2 \n"

++" 1 \n"

++" -2 0 2\n"

++" x\n")

,eqTest (run2string "y=x")

"==" ("\n 2 *\n"

++" 1 * \n"

++"y 0 * \n"

++" -1 * \n"

++" -2* \n"

++" -2 0 2\n"

++" x\n")

Figure 1: Tests for problem 3, part 1 of 4.

6

,eqTest (run2string "y=x+3")

"==" ("\n 5 *\n"

++" 4 * \n"

++" 3 * \n"

++" 2 * \n"

++" 1 * \n"

++"y 0 * \n"

++" -1 * \n"

++" -2 * \n"

++" -3 * \n"

++" -4 * \n"

++" -5* \n"

++" -8-6-4-2 0 2\n"

++" x\n")

,eqTest (run2string "y=square x")

"==" ("\n 21 \n"

++" 20 \n"

++" 19 \n"

++" 18 \n"

++" 17 \n"

++" 16 * * \n"

++" 15 \n"

++" 14 \n"

++" 13 \n"

++" 12 \n"

++" 11 \n"

++" 10 \n"

++"y 9 * * \n"

++" 8 \n"

++" 7 \n"

++" 6 \n"

++" 5 \n"

++" 4 * * \n"

++" 3 \n"

++" 2 \n"

++" 1 * * \n"

++" 0 * \n"

++" -1 \n"

++" -2 \n"

++" -3 \n"

++" -12 -9 -6 -3 0 3 6 9 12\n"

++" x\n")

Figure 2: Tests for problem 3, continued, part 2 of 4.

7

,eqTest (run2string "y=cube x")

"==" ("\n 21 \n"

++" 20 \n"

++" 19 \n"

++" 18 \n"

++" 17 \n"

++" 16 \n"

++" 15 \n"

++" 14 \n"

++" 13 \n"

++" 12 \n"

++" 11 \n"

++" 10 \n"

++" 9 \n"

++" 8 * \n"

++" 7 \n"

++"y 6 \n"

++" 5 \n"

++" 4 \n"

++" 3 \n"

++" 2 \n"

++" 1 * \n"

++" 0 * \n"

++" -1 * \n"

++" -2 \n"

++" -3 \n"

++" -4 \n"

++" -5 \n"

++" -6 \n"

++" -7 \n"

++" -8 * \n"

++" -9 \n"

++" -9-7-5-3-1 1 3 5 7 9111315171921\n"

++" x\n")

,eqTest (run2string "y=sine x")

"==" ("\n 10 \n"

++" 9 * * * \n"

++" 8 * \n"

++" 7 * \n"

++" 6 * \n"

++" 5* \n"

++" 4 * \n"

++" 3 \n"

++" 2 * \n"

++" 1 * \n"

++"y 0 * \n"

++" -1 * \n"

++" -2 * \n"

++" -3 \n"

++" -4 * \n"

++" -5 *\n"

++" -6 * \n"

++" -7 * \n"

++" -8 * \n"

++" -9 * * * \n"

++" -10 \n"

++" -10 -7 -4 -1 2 5 8\n"

++" x\n")]

Figure 3: Tests for problem 3, continued, part 3 of 4.

8

-- helpers for testing below, NOT something you have to implement

square x = x^2

cube x = x^3

sine :: Int -> Int
sine x = truncate (10 * (sin (fromIntegral x)))

-- end of helpers for testing

Figure 4: Tests for problem 3, part 4 of 4.

9

Parallel Programming

4. (25 points) [UseModels] [Concepts] Write, in Haskell, a function

parSort :: Ord a => [a] -> [a]

that takes a list and sorts it (in non-decreasing order). Your implementation should use the parallel
processing facilities in Haskell, so that it will run faster on a multicore machine. There are test cases
shown in Figure 5.

-- $Id: ParSortTests.hs,v 1.2 2013/04/08 15:22:52 leavens Exp leavens $

module ParSortTests where
import ParSort

import Testing

main :: IO ()

main = dotests "ParSortTests $Revision: 1.2 $" tests

tests :: [TestCase String]
tests =

[eqTest (parSort "") "==" ""

,eqTest (parSort "defbac") "==" "abcdef"

,eqTest (parSort "The quick brown fox jumped over the lazy dogs.")

"==" " .Tabcddeeeefghhijklmnoooopqrrstuuvwxyz"

,eqTest (parSort "I sought, and soon discovered, the three headstones on the slope")

"==" " ,,Iaacddddeeeeeeeeeghhhhhilnnnnoooooooprrsssssstttttuv"

]

Figure 5: Tests for problem 4.

Note that you will only get full credit if your code is written so that it will run in parallel.

5. (0 points) [Concepts] In this optional problem, if you have a multicore computer, measure the speedup
of your code on the task of sorting the words in the novel Wuthering Heights, which is found in the file
wuthering_heights.txt included in the tests.

Post to the discussion on webcourses2 for this problem your speedup and how many cores you used.

Hint: try the measurements using the code in ParSortMain.hs (see Figure 6 on the next page), which
has comments to tell you how to compile it and get detailed output about the sparks used.

Points
This homework’s total points: 65.

References
[Wad95] Philip Wadler. Monads for functional programming. In J. Jeuring and E. Meijer, editors,

Advanced Functional Programming, Proceedings of the Baastad Spring School, volume 925 of
Lecture Notes in Computer Science, New York, NY, May 1995. Springer-Verlag.

10

-- $Id: ParSortMain.hs,v 1.2 2013/03/31 20:53:49 leavens Exp $

-- compile with:

-- ghc -O2 ParSortMain.hs -threaded -rtsopts -eventlog

-- run with:

-- ./ParSortMain +RTS -N -s -ls

module Main where
import ParSort

import Control.Monad (forM_)

import System.IO

main = do putStrLn "starting tests..."

fh <- openFile "wuthering_heights.txt" ReadMode
book <- hGetContents fh

let sorted = parSort (words book)

forM_ sorted putStrLn
putStrLn "... done with tests"

Figure 6: Main program for measuring parSort.

