
COP 4020 — Programming Languages I February 26, 2012

Homework 3: Declarative Programming
See Webcourses and the syllabus for due dates.
Note that you can’t do quizzes on webcourses after their due date, so be sure to take any webcourses quizzes by the
date they are due!
Don’t start these problems at the last minute! These are mostly programming problems that you will need time to
complete.
In this homework you will learn basic techniques of recursive programming over various types of
(recursively-structured) data, and more advanced functional programming techniques such as using higher-order
functions to abstracting from programming patterns, and using higher-order functions to model infinite data
[UseModels] [Concepts]. Many of the problems exhibit polymorphism [UseModels] [Concepts]. The problems as a
whole illustrate how functional languages work without hidden side-effects [EvaluateModels].
Answers to English questions should be in your own words; don’t just quote text from the textbook.
We will take some points off for duplicated code, code with extra unnecessary cases, or code that is excessively hard
to follow. You should always assume that the inputs given will follow the grammar for the types specified, and so
your code should not have extra cases for inputs that do not follow the grammar. Avoid duplicating code by using
helping functions or by using syntactic sugars and local definitions. It is a good idea to check your code for these
problems before submitting.
Code for programming problems should be written in Oz’s declarative model, so do not use either cells or cell
assignment in your Oz solutions. (Furthermore, note that the declarative model does not include the primitive IsDet
or the library function IsFree; thus you are also prohibited from using either of these functions in your solutions.)
But please use all linguistic abstractions and syntactic sugars in the declarative programming model that are helpful!
You should use helping functions whenever you find that useful. Unless we specifically say how you are to solve a
problem, feel free to use any functions that are compatible with the declarative model from the Oz library (base
environment), especially functions like Map and FoldR.
For all Oz programing exercises, you must run your code using the Mozart/Oz system. You can find all the tests we
provide in a zip file, which you can download from problem 1’s assignment on Webcourses.
If the tests don’t pass, please try to say why they don’t pass, as this enhances communication and makes commenting
on the code easier and more specific to your problem.
What to Turn In: For each problem that requires code, turn in (on Webcourses) your code and output of your
testing. Please upload code as a plain (text) file with the name given in the problem or testing file and with the suffix
.oz, and also paste the output from our tests into the answer box on webcourses. For English answers, please paste
your answer into the answer box in the problem’s “assignment” on Webcourses. For a problem with a mix of code
and English, follow both of the above.
Your code should compile with Oz, if it doesn’t you probably should keep working on it. Email the staff with your
code file if you need help getting it to compile. If you don’t have time, at least tell us that you didn’t get it to compile.
For background, you should read Chapter 3 of the textbook [VH04]. Also read “Following the Grammar” [Lea07]
and follow its suggestions for organizing your code. You may also want to read a tutorial on the concepts of
functional programming languages, such as Hudak’s computing survey article mentioned in the syllabus. See also the
course code examples page (and the course resources page).

https://webcourses.ucf.edu/
http://www.eecs.ucf.edu/~leavens/COP4020/syllabus.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutUseModels
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutUseModels
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutEvaluateModels
https://webcourses.ucf.edu/
http://www.eecs.ucf.edu/~leavens/COP4020/running_oz.shtml#OtherProblems
http://www.eecs.ucf.edu/~leavens/COP4020/running_oz.shtml#OtherProblems
http://www.eecs.ucf.edu/~leavens/COP4020/docs/follow-grammar.pdf
http://www.eecs.ucf.edu/~leavens/COP4020/syllabus.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/examples/index.html
http://www.eecs.ucf.edu/~leavens/COP4020/resources.shtml

2

Reading Problems
The problems in this section are intended to get you to read the textbook, ideally in advance of class meetings.

Read chapter 3, through section 3.1 of the textbook [VH04] and answer the following questions.

1. (5 points) [Concepts] [MapToLanguages]

Can one write deterministic programs in C, C++, C#, or Java? (a) pick your language, (b) answer “yes” or “no,”
and (c) give a brief explanation.

2. (18 points) Read section 3.1-3.4.4 in the textbook and then take the quiz titled “Section 3.1-3.4 quiz” on
webcourses.

3. (7 points) Read chapter 3, sections 3.5-3.7 of the textbook [VH04] (you can just skim 3.7.3) and then take the
quiz titled “Section 3.5-3.7 quiz” on webcourses.

4. (3 points) Read chapter 3, sections 3.8-3.9 of the textbook [VH04] and then take the quiz titled “Section 3.8-3.9
quiz” on webcourses.

Regular Problems

Iteration

Material on iteration and tail recursion is found in section 3.2 and 3.4.2.3 and 3.4.3.

5. (0 points) [UseModels] (suggested practice only; don’t hand this in) For practice with iteration, do problem 5 in
section 3.10 of the textbook [VH04] (iterative SumList).

Put your code in a file SumList.oz. After doing your own testing, run our tests in SumListTest.oz (see below).

% $Id: SumListTest.oz,v 1.2 2012/02/26 22:02:15 leavens Exp leavens $

\insert 'SumList.oz'

\insert 'TestingNoStop.oz'

{StartTesting 'SumList $Revision: 1.2 $'}

{Test {SumList nil} '==' 0}

{Test {SumList 3|nil} '==' 3}

{Test {SumList ~2|3|nil} '==' 1}

{Test {SumList [7 8 ~2 3]} '==' 16}

{Test {SumList [1 0]} '==' 24}

{Test {SumList [4 4 2 1 99 105 3004 999999]} '==' 1003218}

{DoneTesting}

6. (10 points) [UseModels] In Oz, write an iterative function

HasPrefix: <fun {$ <List T> <List T>}: <Bool>>

that for some type T takes a list Ls and another list SubLs, and returns true just when all the elements of SubLs
occur in order at the beginning of Ls. You are not allowed to use the Oz built-in function List.isPrefix in your
solution. Figure 1 on the following page has examples that you can find in our test file HasPrefixTest.oz.

Your code must have iterative behavior. (So it must use tail recursion!)

Put your code in a file HasPrefix.oz. After doing your own testing, run our tests in HasPrefixTest.oz. For this
and all coding problems, be sure to hand in both your code and the output of running our tests (see the
instructions above).

3

% $Id: HasPrefixTest.oz,v 1.2 2012/02/26 22:02:15 leavens Exp leavens $

\insert 'HasPrefix.oz'

\insert 'TestingNoStop.oz'

{StartTesting 'HasPrefixTest.oz $Revision: 1.2 $'}

{Test {HasPrefix "" ""} '==' true}
{Test {HasPrefix "<-- there's an empty string here" ""} '==' true}
{Test {HasPrefix "we're off to see the wizard" "we"} '==' true}
{Test {HasPrefix "we're off to see the wizard" "we're off"} '==' true}
{Test {HasPrefix "we're off to see the wizard" "to see"} '==' false}
{Test {HasPrefix "we're off to see the wizard" "ew"} '==' false}
{Test {HasPrefix [a b c] [a]} '==' true}
{Test {HasPrefix [[a b c] [d e]] [[a b c]]} '==' true}
{Test {HasPrefix [[a b c] [d e]] [a b c]} '==' false}
{Test {HasPrefix [1 2 3 4 3 2 1 7] [1 2 3 4 3]} '==' true}
{Test {HasPrefix [x y z] [x y z a b c]} '==' false}
{DoneTesting}

Figure 1: Testing code for problem 6.

7. (15 points) [UseModels] In Oz, write an iterative function

OccursInList: <fun {$ <List T> <List T>}: <Int>>

that for some type T takes a list Ls and another list SubLs, and returns the first index of Ls at which all the
elements of SubLs occur in order. If the elements of SubLs do not occur in Ls in some order, then the function
returns ~1. Figure 2 has examples that you can find in our test file OccursInListTest.oz.

Your code must have iterative behavior. (So it must use tail recursion!)

% $Id: OccursInListTest.oz,v 1.2 2012/02/26 22:02:15 leavens Exp leavens $

\insert 'OccursInList.oz'

\insert 'TestingNoStop.oz'

{StartTesting 'OccursInListTest.oz $Revision: 1.2 $'}

{Test {OccursInList nil nil} '==' ~1}

{Test {OccursInList "<-- see the empty string here" ""} '==' 1}

{Test {OccursInList "now is the time" ""} '==' 1}

{Test {OccursInList "" "ball"} '==' ~1}

{Test {OccursInList "a balloon boonanza" "ball"} '==' 3}

{Test {OccursInList "a balloon boonanza" "oo"} '==' 7}

{Test {OccursInList "concepts, techniques, and models" "tech"} '==' 11}

{Test {OccursInList "a tale of two cities" "es"} '==' 19}

{Test {OccursInList "the trouble with that is this: the trouble with tribbles" "trouble"} '==' 5}

{Test {OccursInList "the trouble with that is this: the trouble with tribbles" "pizza"} '==' ~1}

{Test {OccursInList "the trouble with that is this: the trouble with tribbles" "the"} '==' 1}

{Test {OccursInList "the trouble with that is this: the trouble with tribbles" "with "} '==' 13}

{Test {OccursInList "calculus I" "easy stuff you don't need to worry about"} '==' ~1}

{Test {OccursInList [[a b c] [d e f] [h i j]] [[d e f] [h i j]]} '==' 2}

{Test {OccursInList [[a b c] [d e f] [h i j]] [d e f]} '==' ~1}

{DoneTesting}

Figure 2: Testing code for problem 7.

4

Following the Grammar

Material on following the grammar is found in section 3.4, especially section 3.4.2, and in detail with many examples
in the “Following the Grammar” handout.

(Also, you might try the self-test on “following the grammar” on Webcourses.)

8. (10 points) [UseModels] Write an Oz function

Has3List : <fun {$ <List <List T>>}: <Bool>>

takes a list of lists (of some type T), LL, and returns true just when LL contains a list with exactly three elements.
There are examples in Figure 3.

Note: to properly follow the grammar, you will need at least one helping function.

% $Id: Has3ListTest.oz,v 1.2 2012/02/26 22:02:15 leavens Exp leavens $

\insert 'Has3List.oz'

\insert 'TestingNoStop.oz'

{StartTesting 'Has3ListTest $Revision: 1.2 $'}

{Test {Has3List nil} '==' false}
{Test {Has3List [[a b] [c] [d e f] [g] [h]]} '==' true}
{Test {Has3List [[a b] [c] [d e] [f] [g] [h]]} '==' false}
{Test {Has3List [[a b] [c] [d e] [f]]} '==' false}
{Test {Has3List [[a b c d] [d e] [f]]} '==' false}
{Test {Has3List [[nil nil nil]]} '==' true}
{Test {Has3List [[[a b c]]]} '==' false}
{Test {Has3List [[a nil c]]} '==' true}
{Test {Has3List [[a b] [c] [d e] nil [g] [h]]} '==' false}
{Test {Has3List [nil [1] [2 2] [3 3 3] [4 4 4 4]]} '==' true}
{DoneTesting}

Figure 3: Testing for problem 8.

9. (10 points) [UseModels] Write, in Oz, a function

InsertAfter : <fun {$ <List Atom> <Atom> <Atom>}: <List Atom>>

takes a list of atoms, LoA, and two atoms: AfterThis and What. This function returns a list that is just like LoA,
except that in each place where AfterThis, it puts a copy of What following it. There are examples in Figure 4
on the next page

10. (10 points) [UseModels] Write, in Oz, a function

InsertAfterIn : <fun {$ <List <List Atom>> <Atom> <Atom>}: <List <List Atom>>>

takes a list of lists of atoms, LL, and two atoms: AfterThis and What; this function inserts What after each
occurrence of AfterThis throughout each of the sublists in LL. There are examples in Figure 5 on the following
page

http://www.eecs.ucf.edu/~leavens/COP4020/docs/follow-grammar.pdf
https://webcourses.ucf.edu/

5

% $Id: InsertAfterTest.oz,v 1.3 2012/02/26 22:02:15 leavens Exp leavens $

\insert 'InsertAfter.oz'

\insert 'TestingNoStop.oz'

{StartTesting 'InsertAfterTest $Revision: 1.3 $'}

{Test {InsertAfter nil a w} '==' nil}

{Test {InsertAfter a|b|nil a w} '==' a|w|b|nil}

{Test {InsertAfter [c x y c z c m q] c f} '==' [c f x y c f z c f m q]}

{Test {InsertAfter [m q] c f} '==' [m q]}

{Test {InsertAfter [c m q] c f} '==' [c f m q]}

{DoneTesting}

Figure 4: Testing for problem 9.

% $Id: InsertAfterInTest.oz,v 1.3 2012/02/26 22:02:15 leavens Exp leavens $

\insert 'InsertAfterIn.oz'

\insert 'TestingNoStop.oz'

{StartTesting 'InsertAfterInTest $Revision: 1.3 $'}

{Test {InsertAfterIn nil a w} '==' nil}

{Test {InsertAfterIn [nil nil] a w} '==' [nil nil]}

{Test {InsertAfterIn [[x y] [z z y] [x x o o]] x y} '==' [[x y y] [z z y] [x y x y o o]]}

{Test {InsertAfterIn [[a b c] [c] [c c] [c x y z m q] nil] c f}

'==' [[a b c f] [c f] [c f c f] [c f x y z m q] nil]}

{Test {InsertAfterIn [[a good egg] [boiled] nil [is an egg]

[that is egg enough]] egg souffle}

'==' [[a good egg souffle] [boiled] nil [is an egg souffle]

[that is egg souffle enough]]}

{Test {InsertAfterIn [[a florida senator] [got florida 'in' trouble]

[with florida football]] florida state}

'==' [[a florida state senator] [got florida state 'in' trouble]

[with florida state football]]}

{DoneTesting}

Figure 5: Testing for problem 10.

6

11. (20 points) [UseModels] Write a function

Hep: <fun {$ <List Atom>}: <List Atom> >

that takes a list of atoms, Txt, and returns a list just like Txt but with the following substitutions made each time
they appear in Txt. First, the following substitutions take place when there are three consecutive atoms that
match the pattern:

• by the way is replaced by btw,

• for your information is replaced by fyi, and

• be right back is replaced by brb.

Second, the following substitutions take place when there are two consecutive atoms that match the pattern:

• 'I'see is replaced by ic,

• see you is replaced by cya, and

• voice mail is replaced by vm.

Finally, all of the following subtitutions are made on individual atoms, when not superceded by one of the above:

• you is replaced by u,

• are is replaced by r,

• your is replaced by ur,

• boyfriend is replaced by bf,

• girlfriend is replaced by gf,

• great is replaced by gr8.

These lists r complete (for this problem).

Hints: to handle the 3 element and 2 element substitutions, u may find it useful to have separate helping functions
to look for 3 (and 2) elements that should be replaced. Arrange these functions in a “pipeline,” with the function
that looks for 3 element replacements processing the list argument first, and passing its result to the function that
looks for 2 element replacements, which in turn passes its result to a function that looks for single atom
replacements.

The examples in Figure 6 on the next page r also found in our testing file HepTest.oz which u can get from
webcourses (in the zip file attached to problem 1). Be sure to turn in both ur code and the output of our tests on
webcourses.

Put ur code in a file Hep.oz and test using our tests. BTW, we will take some number of points off if u have
repeated code in ur solution. U can avoid some repeated code by using helping functions or case-expressions.
(Note that a case-expression can be used inside a larger expression.)

7

% $Id: HepTest.oz,v 1.2 2012/02/26 22:02:15 leavens Exp leavens $

\insert 'Hep.oz'

\insert 'TestingNoStop.oz'

{StartTesting 'HepTest $Revision: 1.2 $'}

{Test {Hep nil} '==' nil}

{Test {Hep [you you you you]} '==' [u u u u]}

{Test {Hep ['I' see your voice mail]} '==' [ic ur vm]}

{Test {Hep [hey 'I' see your voice mail]} '==' [hey ic ur vm]}

{Test {Hep [by the way 'for' your information 'I' will be right back]}

'==' [btw fyi 'I' will brb]}

{Test {Hep [hey by the way 'for' your information 'I' will be right back]}

'==' [hey btw fyi 'I' will brb]}

{Test {Hep [hey you by the way 'for' your information 'I' will be right back]}

'==' [hey u btw fyi 'I' will brb]}

{Test {Hep [you know 'I' will see you soon]}

'==' [u know 'I' will cya soon]}

{Test {Hep [by the way you must see my girlfriend she is great]}

'==' [btw u must see my gf she is gr8]}

{Test {Hep ['for' your information you are a pig see you later when you find me a boyfriend]}

'==' [fyi u r a pig cya later when u find me a bf]}

{Test {Hep [by the way 'I' will be right back]} '==' [btw 'I' will brb]}

{Test {Hep [see you you are great by the way]} '==' [cya u r gr8 btw]}

{Test {Hep [you are your own 'for' your information a programmer]}

'==' [u r ur own fyi a programmer]}

{DoneTesting}

Figure 6: Tests for problem 11.

8

12. (15 points) [UseModels]

Write a function

IsRelation: <fun {$ <Value>}: <Bool> >

that takes an Oz Value, Val, and returns true just when Val is a relation. A value is a relation if and only if: (a) it
is in the grammar Figure 7 for 〈Relation〉, and thus is a list of 〈Record〉s, (b) each relation record in the list has
the same label and arity, and (c) the list of relation records has no duplicates (using == to compare elements).

〈Relation〉 ::= 〈List 〈Record〉〉

Figure 7: The grammar for the type 〈Relation〉. Here 〈Record〉 is the types of Oz records [DKS06, Section 2].

Hints: As usual, you can use Oz built-in functions to help with this. For example, you might want to use IsList,
IsRecord, Label, Arity, Not, Member, and All [DKS06].

Figure Figure 8 shows the tests from our test file IsAListTest.oz. Put your code in a file IsRelation.oz and
test using our tests.

% $Id: IsRelationTest.oz,v 1.2 2012/02/26 22:02:15 leavens Exp leavens $

\insert 'IsRelation.oz'

\insert 'RelationExamples.oz'

\insert 'TestingNoStop.oz'

{StartTesting 'IsRelationTest.oz $Revision: 1.2 $'}

{Test {IsRelation nil} '==' true}
{Test {IsRelation 4020} '==' false}
{Test {IsRelation 4020|nil} '==' false}
{Test {IsRelation letters(a 1)|letters(b 2)|nil} '==' true}
{Test {IsRelation [letters(a 1) letters(b 2) letters(c 3)]} '==' true}
{Test {IsRelation [letters(a 1) letters(b 2) letters(a 1)]} '==' false}
{Test {IsRelation [letters(a 1) letters(b 2) letters(b 2)]} '==' false}
{Test {IsRelation [letters(a 1) letters(b 2) letters(b 2)]} '==' false}
{Test {IsRelation letters(a 1)#letters(b 2)} '==' false}
{Test {IsRelation [empty()]} '==' true}
{Test {IsRelation [lettersSchema(letter number)]} '==' true}
{Test {IsRelation [compmaker(who:dell where:texas kind:pc)

compmaker(who:apple where:california kind:mac)]} '==' true}
{Test {IsRelation [add(1 1 2) add(1 2 3) add(1 3 4) add(1 7 8)

add(2 1 3) add(2 2 4) add(2 3 5) add(2 4 6)]} '==' true}
{Test {IsRelation [rr(a b c d e f g h i j k) rr(l m n o p q r s t u v)]} '==' true}
{Test {IsRelation [rr(a b c d e f g h i j k) rr(l m n o p q r s t u v)

rr(w x y z)]} '==' false}
{Test {IsRelation Fish} '==' true}
{Test {IsRelation Cities} '==' true}
{Test {IsRelation Ports} '==' true}
{DoneTesting}

Figure 8: Tests for 12. The file RelationExamples.oz is shown in Figure 9 on the following page.

9

% $Id: RelationExamples.oz,v 1.2 2012/02/26 22:02:15 leavens Exp leavens $

% Some example relations

declare
Fish = [fish(kind:tuna city:'Tokyo' country:'Japan')

fish(kind:shrimp city:'Manchester' country:'United Kingdom')

fish(kind:octopus city:'Seoul' country:'South Korea')

fish(kind:abalone city:'Canton' country:'China')

fish(kind:crab city:'Shanghai' country:'China')

fish(kind:oyster city:'Singapore' country:'Singapore')

fish(kind:squid city:'Rio de Janeiro' country:'Brazil')]

Cities = [city(name:'Tokyo' country:'Japan' population:34400000)

city(name:'Canton' country:'China' population:25600000)

city(name:'Seoul' country:'South Korea' population:25300000)

city(name:'Shanghai' country:'China' population:25100000)

city(name:'Mexico City' country:'Mexico' population:23100000)

city(name:'Delhi' country:'India' population:22900000)]

Ports = [port(name:'Shanghai' country:'China' tons:537)

port(name:'Singapore' country:'Singapore' tons:448)

port(name:'Rotterdam' country:'Netherlands' tons:378)

port(name:'Ningbo' country:'China' tons:307)

port(name:'Guangzhou' country:'China' tons:302)

port(name:'Tianjin' country:'China' tons:257)]

Figure 9: Some examples of Relations.

10

13. (10 points) [UseModels] In Oz, write a function

RelUnion: <fun {$ <Relation> <Relation>}: <Relation> >

that takes two <Relation>s, R1 and R2, that have the same label and arity for all their records, and returns a
relation containing all the records of both R1 and R2, but without any duplicates. You may assume in that the
argument relations have the records that all contain the same label and arity (field names). See Figure 10 for
examples from our test file RelUnionTest.oz.

Put your code in a file RelUnion.oz and test it using our tests. (As described on the first page, you are to hand in
both the code and the output of our tests.)

% $Id: RelUnionTest.oz,v 1.2 2012/02/26 22:02:15 leavens Exp leavens $

\insert 'RelUnion.oz'

\insert 'RelationTesting.oz'

declare
{StartTesting 'RelUnionTest.oz $Revision: 1.2 $'}

{EqTest {RelUnion nil [spacecraft(series:mercury date:1962)]}

'=set=' [spacecraft(series:mercury date:1962)]}

{EqTest {RelUnion [spacecraft(series:mercury date:1962)] nil}

'=set=' [spacecraft(series:mercury date:1962)]}

{EqTest {RelUnion [spacecraft(series:mercury date:1962)] [spacecraft(series:mercury date:1962)]}

'=set=' [spacecraft(series:mercury date:1962)]}

{EqTest {RelUnion [spacecraft(series:mercury date:1962)] [spacecraft(series:mercury date:1962)]}

'=set=' [spacecraft(series:mercury date:1962)]}

{EqTest {RelUnion [spacecraft(series:apollo date:1969)

spacecraft(series:mercury date:1962)]

[spacecraft(series:mercury date:1962)

spacecraft(series:apollo date:1969)]}

'=set=' [spacecraft(series:mercury date:1962)

spacecraft(series:apollo date:1969)]}

{EqTest {RelUnion [add(3 4 7) add(1 2 3) add(1 3 4) add(1 4 5)]

[add(1 4 5) add(1 5 6) add(1 2 3) add(1 3 4) add(2 6 8) add(3 7 10)]}

'=set=' [add(3 4 7) add(1 4 5) add(1 5 6) add(1 2 3) add(1 3 4) add(2 6 8) add(3 7 10)]}

{DoneTesting}

Figure 10: Tests for problem 13. These use testing code from RelationTesting.oz.

14. (10 points) [UseModels] In Oz, write a function

RelSelect: <fun {$ <Relation> <fun {$ <RelationRecord>}: <Bool>>}: <Relation> >

that takes a <Relation>, Rel, and a predicate Pred (a function from relation records to Booleans), and returns a
<Relation> that contains all records in Rel that satisfy Pred. You should assume that {IsRelation Rel} is true;
that is, the argument Rel satisfies all the properties required of a relation. The result should also satisfy these
properties. See Figure 11 on the following page for examples from our test file RelSelectTest.oz.

Put your code in a file RelSelect.oz and test it using our tests. (As described on the first page, you are to hand
in both the code and the output of our tests.)

11

% $Id: RelSelectTest.oz,v 1.4 2012/02/26 22:02:15 leavens Exp leavens $

\insert 'RelSelect.oz'

\insert 'RelationExamples.oz'

\insert 'RelationTesting.oz'

{StartTesting 'RelSelectTest.oz $Revision: 1.4 $'}

{EqTest {RelSelect nil fun {$ RR} RR.1 > 7 end} '=set=' nil}

{EqTest {RelSelect Fish fun {$ RR} RR.country == 'China' end}
'=set=' [fish(kind:abalone city:'Canton' country:'China')

fish(kind:crab city:'Shanghai' country:'China')]}

{EqTest {RelSelect Fish fun {$ RR} RR.kind == tuna orelse RR.kind == squid end}
'=set=' [fish(kind:tuna city:'Tokyo' country:'Japan')

fish(kind:squid city:'Rio de Janeiro' country:'Brazil')]}

{EqTest {RelSelect Ports fun {$ R} R.country == 'China' end}
'=set=' [port(name:'Shanghai' country:'China' tons:537)

port(name:'Ningbo' country:'China' tons:307)

port(name:'Guangzhou' country:'China' tons:302)

port(name:'Tianjin' country:'China' tons:257)]}

{EqTest {RelSelect Cities fun {$ R} R.population > 25000000 end}
'=set=' [city(name:'Tokyo' country:'Japan' population:34400000)

city(name:'Canton' country:'China' population:25600000)

city(name:'Seoul' country:'South Korea' population:25300000)

city(name:'Shanghai' country:'China' population:25100000)]}

{EqTest {RelSelect Ports fun {$ R} R.country == 'China' andthen R.tons > 300 end}
'=set=' [port(name:'Shanghai' country:'China' tons:537)

port(name:'Ningbo' country:'China' tons:307)

port(name:'Guangzhou' country:'China' tons:302)]}

{EqTest {RelSelect {RelSelect Ports fun {$ R} R.country == 'China' end}
fun {$ R} R.tons > 500 end}

'=set=' [port(name:'Shanghai' country:'China' tons:537)]}

{EqTest {RelSelect {RelSelect Ports fun {$ R} R.country == 'China' end}
fun {$ R} R.tons > 800 end}

'=set=' nil}

{DoneTesting}

Figure 11: Tests for problem 14. These use the examples in Figure 9 on page 9. They also use testing code from
RelationTesting.oz.

12

15. (15 points) [UseModels]

In Oz, implement the function

MapInner: <fun {$ <List <List T>> <fun {$ T}: <List S> >}: <List <ListS>> >

that takes a list of lists LL of some type T, and a function F that takes an element of type T and returns a list of
some type S, and which returns a list that is the result of applying F to each element in each inner list, and
forming a list of the results. The list of results appears in the same order as the corresponding elements (at both
levels of the lists). File MapInnerTest.oz contains various examples (see Figure 12).

% $Id: MapInnerTest.oz,v 1.2 2012/02/26 22:02:15 leavens Exp leavens $

\insert 'MapInner.oz'

\insert 'TestingNoStop.oz'

{StartTesting 'MapInnerTest.oz $Revision: 1.2 $'}

{Test {MapInner nil Not} '==' nil}

{Test {MapInner [[true false] [false true] nil] Not} '==' [[false true] [true false] nil]}

{Test {MapInner [[1 2 3 4 5 6] [7] nil [8 9 10] [6 3 2 1 5 7] [4 4 4]]

fun {$ I} I+1 end}
'==' [[2 3 4 5 6 7] [8] nil [9 10 11] [7 4 3 2 6 8] [5 5 5]]}

{Test {MapInner [[[a b] [c d]] [[e f] [h i]]] fun {$ X|Y|nil} Y|X|nil end}
'==' [[[b a] [d c]] [[f e] [i h]]]}

{DoneTesting}

Figure 12: Tests for Problem 15.

16. (10 points) [UseModels] Consider the following grammar (where Lists and Atoms are standard).

〈Text〉 ::= 〈List Paragraph〉
〈Paragraph〉 ::= para(〈List Atom〉)

In Oz, write a function,

NumWords: <fun {$ <Text>}: <Int>>

which takes a Text, Txt, and returns the total number of atoms in it.

Be sure that your code follows the grammar! You can assume that the input has been constructed according to
the grammar. So you should not check for arguments that do not conform to this grammar. However, that we will
take points off if you don’t follow the grammar in your solution!

There are examples in Figure 13 on the next page.

13

% $Id: NumWordsTest.oz,v 1.3 2012/02/26 22:02:15 leavens Exp leavens $

\insert 'NumWords.oz'

\insert 'TestingNoStop.oz'

{StartTesting 'NumWords'}

{Test {NumWords nil} '==' 0}

{Test {NumWords [para([and along came java]) para([cpp was miffed with java])]} '==' 9}

{Test {NumWords [para([dum dum dum dum]) para([dum bum]) para([rum scum])]} '==' 8}

{Test {NumWords [para([it was the best 'of' times it was the worst 'of' times])]} '==' 12}

{Test {NumWords [para(nil)]} '==' 0}

{Test {NumWords [para([it was clear that the day would 'not' 'end' well])

para([the time had come to demolish the university])

para([however colorless green frogs still sat atop the stadium])]} '==' 27}

{DoneTesting}

Figure 13: Examples for 16.

17. (15 points) [UseModels] Using the same grammar as in the previous question,

〈Text〉 ::= 〈List Paragraph〉
〈Paragraph〉 ::= para(〈List Atom〉)

in Oz, write a function,

SubstAll: <fun {$ <Text> <Atom> <Atom>}: <Text>>

which takes a Text, Txt, and two atoms Old and New, and returns a Text that is just like Txt, except that each
occurrence of the atom Old is replaced by the value of New. The following are examples.

\insert 'SubstAll.oz'

{StartTesting 'SubstAll'}

{Test {SubstAll nil java csharp} '==' nil}

{Test {SubstAll [para([and along came java]) para([cpp was miffed with java])]

java csharp}

'==' [para([and along came csharp]) para([cpp was miffed with csharp])]}

{Test {SubstAll [para([dum dum dum dum]) para([dum bum]) para([rum scum])]

dum ah}

'==' [para([ah ah ah ah]) para([ah bum]) para([rum scum])]}

{Test {SubstAll [para([it was the best 'of' times it was the worst 'of' times])]

times tests}

'==' [para([it was the best 'of' tests it was the worst 'of' tests])]}

{DoneTesting}

14

18. (25 points) [UseModels]

This is a problem about the statement and expression grammar from the “Following the Grammar” handout,
section 5.5.

Write a function

NegateIfs: <fun {$ <Statement>}: <Statement>

that takes a statement Stmt, and returns a statement that is just like Stmt except that all ifStmt statements of the
form ifStmt(E S) that occur anywhere within Stmt are replaced by
ifStmt(equalsExp(E varExp(false)) S). This process occurs recursively for all subparts of Stmt, even within
E and S. Figure 14 shows various examples.

\insert 'NegateIfs.oz'

\insert 'TestingNoStop.oz'

{StartTesting 'NegateIfs $Revision: 1.2 $'}

{Test {NegateIfs expStmt(numExp(3))} '==' expStmt(numExp(3))}

{Test {NegateIfs expStmt(varExp(y))} '==' expStmt(varExp(y))}

{Test {NegateIfs expStmt(equalsExp(varExp(y) varExp(z)))}

'==' expStmt(equalsExp(varExp(y) varExp(z)))}

{Test {NegateIfs assignStmt(x numExp(3))} '==' assignStmt(x numExp(3))}

{Test {NegateIfs ifStmt(varExp(true) assignStmt(x numExp(3)))}

'==' ifStmt(equalsExp(varExp(true) varExp(false)) assignStmt(x numExp(3)))}

{Test {NegateIfs expStmt(beginExp(nil numExp(3)))}

'==' expStmt(beginExp(nil numExp(3)))}

{Test {NegateIfs

expStmt(beginExp([ifStmt(varExp(true) assignStmt(x numExp(3)))

assignStmt(y numExp(4))]

varExp(y)))}

'==' expStmt(beginExp([ifStmt(equalsExp(varExp(true) varExp(false))
assignStmt(x numExp(3)))

assignStmt(y numExp(4))]

varExp(y)))}

{Test {NegateIfs

ifStmt(beginExp([ifStmt(varExp(true) assignStmt(x numExp(3)))

assignStmt(y numExp(4))]

varExp(y))

assignStmt(q beginExp([ifStmt(varExp(m) expStmt(numExp(7)))]

varExp(m))))}

'==' ifStmt(equalsExp(beginExp([ifStmt(equalsExp(varExp(true) varExp(false))
assignStmt(x numExp(3)))

assignStmt(y numExp(4))]

varExp(y))

varExp(false))
assignStmt(q beginExp([ifStmt(equalsExp(varExp(m) varExp(false))

expStmt(numExp(7)))]

varExp(m))))}

{DoneTesting}

Figure 14: Tests for Problem 18.

Be sure to use a helping function for expressions, so that your code follows the grammar! We will take points off
if your code does not follow the grammar.

http://www.eecs.ucf.edu/~leavens/COP4020/docs/follow-grammar.pdf

15

Using Libraries and Higher-Order Functions

Material on higher-order functions is found in section 3.6 of the textbook. See also the course’s code examples page.

19. [UseModels]

In Oz, write a function

Capitalize: <fun {$ <List <String> >}: <List <String> > >

that takes a list of non-empty strings and returns a list of strings such that {Capitalize Strings} is the same as
Strings, but with the first character in each String within Strings changed from lower to upper case.

You can use the Oz built-in function Char.toUpper to convert a character from lower to upper case. (This
function leaves characters that are not lower case characters unchanged.)

In this problem you will implement Capitalize twice:

(a) (5 points) by using the for loop with collect: in Oz (see the Oz documentation or section 3.6.3 of the text
[VH04]), and

(b) (5 points) by using Oz’s built in list function Map. (see the code examples page and also Section 6.3 of “The
Oz Base Environment” [DKS06]).

Name your 2 solutions: CapitalizeFor, CapitalizeMap, and put them both in a file named Capitalize.oz.

For the for loop, be sure to use the form with collect:, as only that form of the for loop is an expression.

Hint: since you can assume that each of the strings in Strings is non-empty, you may find it convenient to use
pattern matching in the declarations of the for loop and in the function passed to Map.

You can test each of your solution functions by passing it as an argument to the higher-order procedure
CapitalizeTest in the file CapitalizeTest.oz (see Figure 15).

% $Id: CapitalizeTest.oz,v 1.2 2012/02/26 22:02:15 leavens Exp leavens $

\insert 'Capitalize.oz'

\insert 'TestingNoStop.oz'

declare
{StartTesting 'CapitalizeTest $Revision: 1.2 $'}

proc {CapitalizeTest CapitalizeFun}

{TestLOS {CapitalizeFun nil} '==' nil}

{TestLOS {CapitalizeFun ["the" "computer" "science" "way" "of" "the" "world"]}

'==' ["The" "Computer" "Science" "Way" "Of" "The" "World"]}

{TestLOS {CapitalizeFun ["a" "tale" "of" "two" "cities" "by" "charles" "dickens"]}

'==' ["A" "Tale" "Of" "Two" "Cities" "By" "Charles" "Dickens"]}

{TestLOS {CapitalizeFun ["z"]} '==' ["Z"]}

{TestLOS {CapitalizeFun ["hand" "in" "test" "output!"]}

'==' ["Hand" "In" "Test" "Output!"]}

end

{StartTesting 'Part A'}

{CapitalizeTest CapitalizeFor}

{StartTesting 'Part B'}

{CapitalizeTest CapitalizeMap}

{DoneTesting}

Figure 15: Test procedure for Problem 19 and its use.

Figure 15 also shows how to use the procedure CapitalizeTest in a way that will work if you name each of
your solutions as indicated, and put them all in a file named Capitalize.oz.

http://www.eecs.ucf.edu/~leavens/COP4020/examples/index.html

16

20. (10 points) [UseModels] [Concepts]

Write a function

Curry: <fun {$ <fun {$ S T}: U>}: <fun {$ S}: <fun {$ T}: U> > >

that takes a two-argument function, F, and returns a curried version of F. Figure 16 gives some examples, found
in the file CurryTest.oz.

Hint: Note that a 2-argument function named F is equivalent to fun {$ X Y} {F X Y} end. Also note that
Curry cannot know anything about the function F that is its argument; in other words, Curry must operate in the
same way, regardless of what F is.

% $Id: CurryTest.oz,v 1.3 2012/02/26 22:02:15 leavens Exp leavens $

\insert 'Curry.oz'

\insert 'TestingNoStop.oz'

{StartTesting 'Curry'}

{Test {{{Curry Number.'+'} 3} 6} '==' 9}

{Test {{{Curry Number.'+'} 5} 6} '==' 11}

{Test {{{Curry fun {$ X Y} 2*X*X+3*Y end} 10} 5} '==' 2*10*10+3*5}

{Test {{{Curry fun {$ X Y} X#Y end} 10} 5} '==' 10#5}

for I in 300 .. 310

do {Test {{{Curry fun {$ X Y} X+Y+I end} I*20} I*500} '==' (I*20)+(I*500)+I}

end
local CA = {Curry Append}

in
{Test {{CA [1 2 3]} [4 5 6]} '==' [1 2 3 4 5 6]}

{Test {{CA [a good time]} [was had by all]}

'==' [a good time was had by all]}

{Test {{CA [color less]} [green ideas]} '==' [color less green ideas]}

end
{DoneTesting}

Figure 16: Examples for problem 20.

17

21. (5 points) [UseModels] [Concepts]

Define a function

SearchForZero: <fun {$ <fun {$ <Int>}:<Int> >}: <Int> >

that takes an integer-valued function F as an argument, and returns the least natural number N such that
{F N} == 0. (In this problem “natural numbers” means non-negative Ints, i.e., 0, 1, 2,) Test the examples
below by using the file SearchForZeroTest.oz (Figure 17), which inserts the actual examples from the file and
SearchForZeroBodyTest.oz (Figure 18).

% $Id: SearchForZeroTest.oz,v 1.2 2012/02/26 22:02:15 leavens Exp leavens $

\insert 'TestingNoStop.oz'

\insert 'SearchForZero.oz'

\insert 'SearchForZeroBodyTest.oz'

Figure 17: The file SearchForZeroTest.oz.

% $Id: SearchForZeroBodyTest.oz,v 1.2 2012/02/26 22:02:15 leavens Exp leavens $

{StartTesting 'SearchForZeroBodyTest $Revision: 1.2 $'}

{Test {SearchForZero fun {$ X} if X == 3 then 0 else 5 end end} '==' 3}

{Test {SearchForZero fun {$ X} 5*X - 10 end} '==' 2}

{Test {SearchForZero fun {$ N} N*N - 36 end} '==' 6}

{Test {SearchForZero fun {$ N} N*N - 10000 end} '==' 100}

{Test {SearchForZero fun {$ N} N*N - 1000000 end} '==' 1000}

{DoneTesting}

Figure 18: The file SearchForZeroBodyTest.oz.

18

22. (5 points) [UseModels] [Concepts]

Without using SearchForZero, define a function

SearchForFixedPoint: <fun {$ <fun {$ <Int>}: <Int> >}: <Int> >

that takes an integer-valued function F and returns the least fixed point of F in the non-negative integers. That is,
{SearchForFixedPoint F} returns the least non-negative integer N such that {F N} == N.

Test the examples below by feeding the file SearchForFixedPointTest.oz (Figure 19) which inserts the actual
examples from the file SearchForFixedPointBodyTest.oz (Figure 20).

% $Id: SearchForFixedPointTest.oz,v 1.2 2012/02/26 22:02:15 leavens Exp leavens $

\insert 'TestingNoStop.oz'

\insert 'SearchForFixedPoint.oz'

\insert 'SearchForFixedPointBodyTest.oz'

Figure 19: The file SearchForFixedPointTest.oz.

% $Id: SearchForFixedPointBodyTest.oz,v 1.2 2012/02/26 22:02:15 leavens Exp leavens $

{StartTesting 'SearchForFixedPointBodyTest $Revision: 1.2 $'}

{Test {SearchForFixedPoint fun {$ X} X end} '==' 0}

{Test {SearchForFixedPoint fun {$ X} if X == 3 then 3 else 7 end end} '==' 3}

{Test {SearchForFixedPoint fun {$ N} {Nth [8 7 6 5 4 3 2 1 0] N+1} end} '==' 4}

{Test {SearchForFixedPoint fun {$ N} N*N - 42 end} '==' 7}

{DoneTesting}

Figure 20: The file SearchForFixedPointBodyTest.oz.

19

23. (20 points) [UseModels] [Concepts]

Define a curried function SearchForMaker that is a generalization of SearchForZero and SearchForFixedPoint.
(The exact type of SearchForMaker is for you to decide.) Put your code in a file SearchForMaker.oz.

Then write a testing file SearchForMakerTesting.oz that shows how to use your definition of the function
SearchForMaker to define both functions SearchForZero and SearchForFixedPoint. Your testing file should
continue to runs the tests in both SearchForZeroBodyTest.oz and SearchForFixedPointBodyTest.oz, to test
these definitions. Your function SearchForMaker should be able to be instantiated (by passing it a function
argument) to produce both of these other functions. That is, you should have in your file
SearchForMakerTesting.oz something like the code in Figure 21, where you have to fill in appropriate function
arguments for SearchForMaker.

\insert 'SearchForMaker.oz'
\insert 'TestingNoStop.oz'
{StartTesting 'SearchForZero'}
SearchForZero = {SearchForMaker fun ... end}
\insert 'SearchForZeroBodyTest.oz'
{StartTesting 'SearchForFixedPoint'}
SearchForFixedPoint = {SearchForMaker fun ... end}
\insert 'SearchForFixedPointBodyTest.oz'

Figure 21: Outline of the code for your file SearchForMakerTesting.oz.

Turn in both your code and the file SearchForMakerTesting.oz that you wrote, as well as the output from
running the tests in SearchForMakerTesting.oz.

24. (15 points) [UseModels]

Using FoldR define

Count: <fun {$ <List T> <T>}: <Int> >

that, for some type T, takes two arguments: Lst, which is a list of values of type T, and Elem, which is a value of
type T. The function you are to write, Count, returns an integer that is equal to the number of times that an
element equal to Elem is found in Lst. Use the == operator to tell whether an element of Lst is equal to Elem. See
Figure 22 on the following page for examples.

To properly use FoldR to define your solution, make sure that your code for this problem looks like the following
outline. (You can also use helping functions.)

fun {Count Lst Elem}
{FoldR
...
...

}
end

20

% $Id: CountTest.oz,v 1.2 2012/02/26 22:02:15 leavens Exp leavens $

\insert 'TestingNoStop.oz'

\insert 'Count.oz'

{StartTesting 'CountTest $Revision: 1.2 $'}

{Test {Count nil 7} '==' 0}

{Test {Count [7 2 1 7 3] 7} '==' 2}

{Test {Count [2 1 7 3] 7} '==' 1}

{Test {Count [a g o o d t i m e] o} '==' 2}

{Test {Count [a g o o d t i m e] e} '==' 1}

{Test {Count [e e e k s a i d m i n e e] e} '==' 5}

{DoneTesting}

Figure 22: Tests for Problem 24 on the previous page.

The next three problems work with the type “Music,” as defined by the following grammar. Note that all the 〈Int〉s
that occur in a 〈Music〉 are guaranteed to be non-negative.

〈Music〉 ::=
pitch(〈Int〉)

| chord(〈List Music〉)
| sequence(〈List Music〉)

25. (10 points) [UseModels] Define a function

HighestNote: <fun {$ <Music>}: <Number> >

that takes a 〈Music〉 and returns the largest 〈Int〉 that occurs within it. Note that you can use the built-in Oz
function Max in your solution, as well as functions such as Map and FoldR to deal with the lists. For this problem
we guarantee that the 〈Music〉 arguments passed to HighestNote will not contain empty lists.
Do not pass lists directly to HighestNote, as that will not follow the grammar! We will take points off if you do
not follow the grammar by using separate helping functions (or built-in functions such as FoldR or Map) to deal
with lists.
You can test your definition of HighestNote using the code given in HighestNoteTest.oz (see Figure 23),
which uses the examples from the file HighestNoteBodyTest (also in the figure). The latter gives some
examples. Note that in this problem some of the lists may be empty.

% $Id: HighestNoteTest.oz,v 1.2 2012/02/26 22:02:15 leavens Exp leavens $

\insert 'TestingNoStop.oz'

\insert 'HighestNote.oz'

\insert 'HighestNoteBodyTest.oz'

% $Id: HighestNoteBodyTest.oz,v 1.2 2012/02/26 22:02:15 leavens Exp leavens $

{StartTesting 'HighestNoteBodyTest $Revision: 1.2 $'}

{Test {HighestNote pitch(3)} '==' 3}

{Test {HighestNote chord([pitch(1) pitch(3) pitch(5) pitch(8)])} '==' 8}

{Test {HighestNote chord([pitch(3) sequence([pitch(3) pitch(5) pitch(8)])])}

'==' 8}

{Test {HighestNote sequence([pitch(3)

chord([pitch(1) pitch(3) pitch(5) pitch(8)])

chord([pitch(2) sequence([pitch(1) pitch(3)])])

sequence([chord([pitch(5) pitch(9)])

chord([pitch(6) pitch(8)])

pitch(1)])

])}

'==' 9}

{DoneTesting}

Figure 23: Testing for problem 25.

21

26. (15 points) [UseModels] Define a function

Transpose: <fun {$ <Music> <Int>}: <Music> >

that takes a music value, Song, and a number, Delta, and produces a music value that is just like Song, but in
which each integer has been replaced by that integer plus Delta. (This is what musicians call transposition,
hence the name.)

There are tests for Transpose in two files. The file TransposeTest.oz (Figure 24) is the driver that you use to
run the tests. The file TransposeBodyTest.oz (Figure 25 on the following page) contains the actual test cases.

% $Id: TransposeTest.oz,v 1.2 2012/02/26 22:02:15 leavens Exp leavens $

\insert 'TestingNoStop.oz'

\insert 'Transpose.oz'

\insert 'TransposeBodyTest.oz'

Figure 24: Testing for problem 26.

27. (30 points) [Concepts] [UseModels] By generalizing your answers to the above problems, define an Oz function

FoldMusic: <fun {$ <Music> <fun {$ <Int>}: T>
<fun {$ <List Music>}: T> <fun {$ <List Music>}: T>}: T>

that is analogous to FoldR for lists. The arguments to FoldMusic are a 〈Music〉, Song, a function PFun that works
on the 〈Int〉 in a pitch record, a function CFun that works on the 〈List Music〉 in a chord record, and a function
SFun that works on the 〈List Music〉 in a sequence record.

Figure 26 on page 23 has testing code, in FoldMusicTest.oz, tests that your definition of FoldMusic can be used
to define HighestNote, and Transpose.

22

% $Id: TransposeBodyTest.oz,v 1.2 2012/02/26 22:02:15 leavens Exp leavens $

{StartTesting 'TransposeBodyTest $Revision: 1.2 $'}

{Test {Transpose pitch(3) 7} '==' pitch(10)}

{Test {Transpose pitch(10) 5} '==' pitch(15)}

{Test {Transpose chord(nil) ~3} '==' chord(nil)}

{Test {Transpose chord([pitch(1) pitch(5) pitch(8)]) 2}

'==' chord([pitch(3) pitch(7) pitch(10)])}

{Test {Transpose sequence(nil) ~1} '==' sequence(nil)}

{Test {Transpose sequence([pitch(1) pitch(5) pitch(8)]) 2}

'==' sequence([pitch(3) pitch(7) pitch(10)])}

{Test {Transpose

sequence([chord([pitch(1) pitch(5) pitch(8)])

chord([pitch(3) pitch(7) pitch(0)])

chord([pitch(7) pitch(5) pitch(9)])])

1}

'==' sequence([chord([pitch(2) pitch(6) pitch(9)])

chord([pitch(4) pitch(8) pitch(1)])

chord([pitch(8) pitch(6) pitch(10)])])}

{Test {Transpose

chord([sequence([chord([pitch(1) pitch(5) pitch(8)])

chord([pitch(3) pitch(7) pitch(0)])

chord([pitch(7) pitch(5) pitch(9)])])

sequence([pitch(1) pitch(1)])

chord([sequence(nil) sequence([pitch(3)])])])

1}

'==' chord([sequence([chord([pitch(2) pitch(6) pitch(9)])

chord([pitch(4) pitch(8) pitch(1)])

chord([pitch(8) pitch(6) pitch(10)])])

sequence([pitch(2) pitch(2)])

chord([sequence(nil) sequence([pitch(4)])])])}

{Test {Transpose

sequence([chord([sequence([chord([pitch(1) pitch(5) pitch(8)])

chord([pitch(3) pitch(7) pitch(0)])

chord([pitch(7) pitch(5) pitch(9)])])

sequence([pitch(1) pitch(1)])

chord([sequence(nil) sequence([pitch(3)])])])

chord([pitch(1) pitch(9)])])

1}

'==' sequence([chord([sequence([chord([pitch(2) pitch(6) pitch(9)])

chord([pitch(4) pitch(8) pitch(1)])

chord([pitch(8) pitch(6) pitch(10)])])

sequence([pitch(2) pitch(2)])

chord([sequence(nil) sequence([pitch(4)])])])

chord([pitch(2) pitch(10)])])}

{DoneTesting}

Figure 25: Body of tests for problem 26.

23

% $Id: FoldMusicTest.oz,v 1.2 2012/02/26 22:02:15 leavens Exp leavens $

\insert 'FoldMusic.oz'

\insert 'TestingNoStop.oz'

declare
fun {HighestNote Song}

fun {HighestInList LOM} % TYPE: <fun {$ <List Music>}: <Int>>

{FoldR {Map LOM HighestNote} Max ~1}

end
in

{FoldMusic Song fun {$ N} N end HighestInList HighestInList}

end
fun {Transpose Song Delta}

fun {TransposeList LOM} % TYPE: <fun {$ <List Music>}: <List Music>>

{Map LOM fun {$ M} {Transpose M Delta} end}
end

in
{FoldMusic Song

fun {$ N} pitch(N+Delta) end
fun {$ Lst} chord({TransposeList Lst}) end
fun {$ Lst} sequence({TransposeList Lst}) end}

end
\insert 'HighestNoteBodyTest.oz'

\insert 'TransposeBodyTest.oz'

Figure 26: Testing for Problem 27 on page 21.

24

28. (30 points) [UseModels] [Concepts]

A potentially infinite bag (or PIBag) can be described by a “characteristic function” of type
<fun {$ <Value>}: <Int> >, that determines the multiplicity of each value in the bag. For example, the
function M such that

M(x) = x − 7, if x is an number and x > 7

is the characteristic function for a potentially infinite bag containing all numbers strictly greater than 7, with 8
having multiplicity 1, 9 having multiplicity 2, 10 occuring 3 times, etc. Allowing the user to construct such a
potentially infinite bag from a characteristic function gives them the power to construct potentially infinite bags
like the one above, which contains an infinite number of elements. (In this example, the bag contains i− 7 copies
of all numbers i that are strictly greater than 7.)

Your problem is to implement the following operations for the type PIBag of potentially infinite bags. (Hint:
think about using a function type as the representation of PIBags.)

1. The function PIBagSuchThat takes a characteristic function, F and returns a potentially infinite bag such
that each value X is in the resulting PIBag with multiplicity {F X}.

2. The function PIBagUnion takes two PIBags, with characteristic functions F and G, and returns a PIBag
such that each value X is in the resulting PIBag with multiplicity {F X} + {G X}.

3. The function PIBagIntersect takes two PIBags, with characteristic functions F and G, and returns a
PIBag such that each value X is in the resulting PIBag with a multiplicity that is the minimum of {F X}
and {G X}.

4. The function PIBagMultiplicity takes a PIBag B and a value X and returns an Int that tells how many
times X is in B.

5. The function PIBagAdd takes a PIBag B, a value X , and a multiplicity N , and returns a PIBag that contains
everything in B plus N more occurrences of X .

Note (hint, hint) that the equations in Figure 27 must hold, for all functions F and G, elements X and Y of
appropriate types, and 〈Int〉s N.

{PIBagMultiplicity {PIBagUnion {PIBagSuchThat F} {PIBagSuchThat G}} X}
== {F X} + {G X}

{PIBagMultiplicity {PIBagIntersect {PIBagSuchThat F} {PIBagSuchThat G}} X}
== {Min {F X} {G X}}

{PIBagMultiplicity {PIBagSuchThat F} X} == {F X}
{PIBagMultiplicity {PIBagAdd {PIBagSuchThat F} Y N} X}

== if X == Y then {F Y} + N else {F X} end

Figure 27: Equations that give hints for problem 28.

As examples, consider the tests in Figure 28 on the following page.

25

% $Id: PIBagTest.oz,v 1.2 2012/02/26 22:02:15 leavens Exp leavens $

\insert 'PIBag.oz'

\insert 'TestingNoStop.oz'

{StartTesting 'PIBagTest $Revision: 1.2 $'}

declare
fun {Cokes X} if X == coke then 6 else 0 end end
fun {Beers X} if X == beer then 12 else 0 end end
fun {GTMaker Y} fun {$ X} if {IsInt X} andthen X > Y then X else 0 end end end
GT5 = {GTMaker 5}

GT7 = {GTMaker 7}

{Test {PIBagMultiplicity {PIBagSuchThat Cokes} coke} '==' 6}

{Test {PIBagMultiplicity {PIBagSuchThat Cokes} pepsi} '==' 0}

{Test {PIBagMultiplicity {PIBagAdd {PIBagSuchThat Cokes} pepsi 2} coke} '==' 6}

{Test {PIBagMultiplicity {PIBagAdd {PIBagSuchThat Cokes} pepsi 2} pepsi} '==' 2}

{Test {PIBagMultiplicity {PIBagAdd {PIBagSuchThat Cokes} pepsi 2} sprite} '==' 0}

{Test {PIBagMultiplicity {PIBagUnion {PIBagSuchThat Cokes} {PIBagSuchThat Beers}}

pepsi} '==' 0}

{Test {PIBagMultiplicity {PIBagUnion {PIBagSuchThat Cokes} {PIBagSuchThat Beers}}

coke} '==' 6}

{Test {PIBagMultiplicity {PIBagUnion {PIBagSuchThat Cokes} {PIBagSuchThat Beers}}

beer} '==' 12}

{Test {PIBagMultiplicity

{PIBagIntersect {PIBagSuchThat Cokes} {PIBagSuchThat Beers}}

coke} '==' 0}

{Test {PIBagMultiplicity {PIBagSuchThat GT5} coke} '==' 0}

{Test {PIBagMultiplicity {PIBagSuchThat GT7} coke} '==' 0}

{Test {PIBagMultiplicity {PIBagSuchThat GT7} 8} '==' 8}

{Test {PIBagMultiplicity {PIBagSuchThat GT7} 7} '==' 0}

{Test {PIBagMultiplicity {PIBagSuchThat GT7} 6} '==' 0}

{Test {PIBagMultiplicity {PIBagSuchThat GT7} 999092384084184} '==' 999092384084184}

{Test {PIBagMultiplicity {PIBagSuchThat GT5} 999092384084184} '==' 999092384084184}

{Test {PIBagMultiplicity {PIBagUnion {PIBagSuchThat GT5} {PIBagSuchThat GT7}} 6}

'==' 6}

{Test {PIBagMultiplicity {PIBagUnion {PIBagSuchThat GT5} {PIBagSuchThat GT5}} 6}

'==' 12}

{Test {PIBagMultiplicity {PIBagIntersect {PIBagSuchThat GT5} {PIBagSuchThat GT7}} 6}

'==' 0}

{Test {PIBagMultiplicity {PIBagAdd {PIBagSuchThat GT5} 10 3} 10} '==' 13}

{DoneTesting}

Figure 28: Example tests for problem 28.

26

29. (25 points) [Concepts] [UseModels]

Consider the following data grammars.

<Exp> ::= boolLit(<Bool>)
| intLit(<Int>)
| charLit(<Char>)
| subExp(<Exp> <Exp>)
| equalExp(<Exp> <Exp>)
| andExp(<Exp> <Exp>)
| ifExp(<Exp> <Exp> <Exp>)

<OType> ::= obool | oint | ochar | owrong

In the grammar for expressions, <Exp>, the boolLit, intLit, and charLit records represent Boolean, Integer,
and Character literals (respectively). As the grammar says, you can assume that inside boolLit is a <Bool>, and
inside an intLit is an <Int>, and similarly for charLit. Records of the form subExp(E1 E2) represent
subtractions (E1 − E2). Records of the form equalExp(E1 E2) represent equality tests, i.e., E1 == E2. Records
of the form andExp(E1 E2) represent conjunctions, i.e., E1 andthen E2. Records of the form ifExp(E1 E2 E3)
represent if-then-else expressions, i.e., if E1 then E2 else E3 end.

In the grammar for types, <OType>, the type obool is the type of the Booleans, oint is the type of the integers,
and ochar is the type of the characters. The type owrong is used for the type of expressions that contain a type
error.

Your task is to write a function

TypeOf: <fun {$ <Exp>}: OType>

that takes an <Exp> and returns its OType. The file TypeOfTest.oz (see Figure 29 on the next page) gives some
examples and should be used for testing.

Your function should incorporate a reasonable notion of what the exact type rules are, but your rules should agree
with our test cases in Figure 29 on the following page. (Exactly what “reasonable” is left up to you; explain any
decisions you feel the need to make. However, note that this is static type checking, you will not be executing the
programs and should not look at the values of subexpressions when deciding on types.)

The answer should not suppress owrong in any subexpression; that is, if a subexpression is wrong, the whole
expression that contains it is wrong.

Points
This homework’s total points: 383. Total extra credit points: 0.

References
[DKS06] Denys Duchier, Leif Kornstaedt, and Christian Schulte. The Oz Base Environment. mozart-oz.org, June

2006. Version 1.3.2.

[Lea07] Gary T. Leavens. Following the grammar. Technical Report CS-TR-07-10b, School of EECS, University
of Central Florida, Orlando, FL, 32816-2362, November 2007.

[VH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming. The MIT
Press, Cambridge, Mass., 2004.

27

% $Id: TypeOfTest.oz,v 1.2 2012/02/26 22:02:15 leavens Exp leavens $

\insert 'TypeOf.oz'

\insert 'TestingNoStop.oz'

{StartTesting 'TypeOfTest $Revision: 1.2 $'}

{Test {TypeOf boolLit(true)} '==' obool}

{Test {TypeOf boolLit(false)} '==' obool}

{Test {TypeOf intLit(4020)} '==' oint}

{Test {TypeOf charLit(&c)} '==' ochar}

{Test {TypeOf subExp(intLit(3) intLit(4))} '==' oint}

{Test {TypeOf subExp(subExp(intLit(3) intLit(4))

subExp(intLit(7) intLit(8)))} '==' oint}

{Test {TypeOf subExp(charLit(&a) intLit(4))} '==' owrong}

{Test {TypeOf subExp(intLit(4) charLit(&a))} '==' owrong}

{Test {TypeOf subExp(intLit(4) boolLit(true))} '==' owrong}

{Test {TypeOf subExp(boolLit(true) intLit(4))} '==' owrong}

{Test {TypeOf equalExp(intLit(3) intLit(4))} '==' obool}

{Test {TypeOf equalExp(charLit(&a) intLit(&b))} '==' owrong}

{Test {TypeOf equalExp(boolLit(true) boolLit(false))} '==' obool}

{Test {TypeOf equalExp(subExp(intLit(5) intLit(3)) intLit(4))} '==' obool}

{Test {TypeOf andExp(boolLit(true) boolLit(false))} '==' obool}

{Test {TypeOf andExp(ifExp(boolLit(true) boolLit(false) boolLit(true))
boolLit(false))} '==' obool}

{Test {TypeOf ifExp(boolLit(true) intLit(5) intLit(3))} '==' oint}

{Test {TypeOf ifExp(boolLit(false) boolLit(false) intLit(3))} '==' owrong}

{Test {TypeOf ifExp(boolLit(true) intLit(7) charLit(&c))} '==' owrong}

{Test {TypeOf equalExp(subExp(charLit(&a) intLit(3))

intLit(4))} '==' owrong}

{Test {TypeOf equalExp(ifExp(subExp(charLit(&a) intLit(&b))

boolLit(false)
intLit(4))

ifExp(boolLit(true) intLit(3) intLit(4)))}

'==' owrong}

{Test {TypeOf ifExp(boolLit(true) intLit(4) intLit(5))} '==' oint}

{Test {TypeOf ifExp(boolLit(true) intLit(4) boolLit(true))} '==' owrong}

{Test {TypeOf ifExp(intLit(3) intLit(4) intLit(5))} '==' owrong}

{Test {TypeOf equalExp(subExp(charLit(&a) intLit(3))

ifExp(intLit(0) intLit(4) boolLit(true)))}
'==' owrong}

{Test {TypeOf equalExp(subExp(charLit(&a) charLit(&b))

ifExp(boolLit(false)
ifExp(andExp(boolLit(true) boolLit(false))

intLit(4)

boolLit(false))
boolLit(true)))}

'==' owrong}

{Test {TypeOf equalExp(equalExp(subExp(intLit(7) intLit(6))

subExp(intLit(5) intLit(4)))

ifExp(equalExp(intLit(3) intLit(3))

ifExp(boolLit(true)
boolLit(true)
boolLit(false))

equalExp(charLit(&y) charLit(&y))))}

'==' obool}

{DoneTesting}

Figure 29: Examples for problem 29.

