
COP 4020 — Programming Languages I January 11, 2012

Homework 1: Introduction to Programming Concepts
See Webcourses and the syllabus for due dates.
In this homework you will learn some of the basics of Oz and the Mozart system [UseModels], and, more
importantly, you will get an overview of programming concepts [Concepts]. We will also motivate careful
comparisons with other langauges [MapToLanguages].

General Directions
Answers to English questions should be in your own words; don’t just quote from the textbook.
For all Oz programming exercises, you must run your code using the Mozart/Oz system (use the “Feed Buffer” item
in the Oz menu to run a file’s code). See the course’s “Running Oz” page for instructions about installation and
troubleshooting of the Mozart/Oz system on your own computer.
For programming problems for which we provide tests, you can find them all in a zip file, which you can download
from Webcourses in the attachments to problem 1.
If the tests don’t pass, please try to say why they don’t pass, as this enhances communication and makes commenting
on the code easier and more specific to your problem.
Our tests use the functions in the course library’s TestingNoStop.oz. The Test procedure in this file can be passed
an actual value, a connective (which is used only in printing), and an expected value, as in the following statement.

{Test {CombA 4 3} '==' 24 div (6*1)}

The Assert procedure in this file can be passed a Boolean, as in the following statement

{Assert {Comb J I} == {CombB J I}}

Calls to Assert produce no output unless they are passed the argument false. Note that you would not pass to
Browse or Show a call to Test or Assert, since neither of these procedures returns a value. If you’re not sure how to
use our testing code, ask us for help.

What to turn in
For problems that require an English answer, paste your answer into the answer box on webcourses for the
assignment corresponding to that problem.
For problems that require code, you must turn in both: (1) the code file and (2) the output of our tests. Upload code as
text files with the name given in the problem or testing file and with the suffix .oz. Use the name of the main function
as the name of the file. When you upload files, don’t put spaces or tabs in your file names!
Your code should compile with Oz, if it doesn’t you should keep working on it. (Email the staff with your code file if
you need help getting it to compile.)

Other directions
You should use helping functions whenever you find that useful. Unless we specifically say how you are to solve a
problem, feel free to use any functions from the Oz library (base environment).
Don’t hesitate to contact the staff if you are stuck at some point.
For background, you should read Chapter 1 of the textbook [VH04] (except section 1.7). But you may also want to
refer to the reference and tutorial material on the Mozart/Oz web site. See also the course resources page.

https://webcourses.ucf.edu/
http://www.eecs.ucf.edu/~leavens/COP4020/syllabus.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutUseModels
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutMapToLanguages
http://www.eecs.ucf.edu/~leavens/COP4020/running_oz.shtml
https://webcourses.ucf.edu/
http://www.eecs.ucf.edu/~leavens/COP4020/lib.zip
http://www.eecs.ucf.edu/~leavens/COP4020/lib/TestingNoStop.oz
http://www.eecs.ucf.edu/~leavens/COP4020/running_oz.shtml#OtherProblems
http://www.mozart-oz.org/
http://www.eecs.ucf.edu/~leavens/COP4020/resources.shtml

2

Reading Problems
The problems in this section are intended to get you to read various material, including the textbook, ideally in
advance of class meetings.

Read the essay “Beating the Averages” by Paul Graham (from the book Hackers and Painters [Gra04]). The essay
can be found on the web at http://www.paulgraham.com/avg.html.

1. [MapToLanguages] For this problem, please put your answer in the answer box on webcourses, and clearly
identify each part of the answer.

(a) (5 points) What is the main claim that Graham makes in this essay?

(b) (5 points) Can you state the essay’s main claim in a way that is scientifically testable? If so, do that;
otherwise say why it cannot be stated in a way that is testable.
If you do not think the claim can be made to be scientifically testable, then state an alternative hypothesis
that is as similar as you can make it, but which is scientifically testable.

(c) (5 points) What experiment could we do during this class to provide evidence for or against the
scientifically testable claim you proposed in the previous part? (Give a brief description.)

2. (10 points) [Concepts] [UseModels Read sections 1.1 through 1.3 of the textbook [VH04] and then do the quiz
on webcourses titled “Oz Basics (Chapter 1).”

Read sections 1.4 of the textbook and answer the following questions.

3. (15 points) [Concepts] [UseModels] This question deals with 3 element lists of atoms, that represent simple
sentences, hence we will write the type of such lists as <Sentence> in what follows. An example <Sentence> is
[robby ate lunch], where the first element of the list is considered the subject, the second the verb, and the
third the object.

Using Oz’s pattern matching feature, write a three functions:

Subject : <fun {$ <Sentence>}: <Atom>>
Verb : <fun {$ <Sentence>}: <Atom>>
Object : <fun {$ <Sentence>}: <Atom>>

such that Subject returns the first element (an atom) of a <Sentence> passed as its argument, Verb returns the
second element (also an atom), and Object returns the third element.

You are prohibited from using recursion or the numeric field dereference operators, such as .1 and .2, in your
solution. You must not call the Oz library function Nth either. Instead, use case and pattern matching. Note that
you are allowed to use Oz sugared syntax such as nested patterns or nested case expressions.

Put your code in a file named SentenceOps.oz, in the same directory with our testing file SentenceOpsTest.oz.
Then run our tests by feeding the buffer SentenceOpsTest.oz to Oz. You will have to look at the *Oz
Emulator* buffer to see the output. Upload to webcourses your SentenceOps.oz file. Then copy the contents of
the *Oz Emulator* buffer and paste them into the answer box in Webcourses. (See also the general directions at
the beginning of this homework.)

The file SentenceOpsTest.oz is shown in Figure 1 on the following page. You should run these tests on your
code. Paste the output from the testing into the answer box for this problem on web courses and upload your file
SentenceOps.oz (as described above).

Note that our tests only call these functions on <Sentence> arguments, so you should assume that the argument
will be a list of exactly 3 atoms. Thus you don’t have to write any code for cases where the input is not a
<Sentence>.

Hint: Note that you can program each function with a single pattern match in a single case expression.

See the course examples page for many examples of Oz functions.

http://www.paulgraham.com/avg.html
http://www.eecs.ucf.edu/~leavens/COP4020/examples/index.html

3

% $Id: SentenceOpsTest.oz,v 1.1 2012/01/11 15:51:50 leavens Exp leavens $

\insert 'SentenceOps.oz'

\insert 'TestingNoStop.oz'

{StartTesting 'SentenceOpsTest $Revision: 1.1 $'}

% If you fix your code, then you may have to restart Oz to make these pass...

{Test {Subject penny|ate|borscht|nil} '==' penny}

{Test {Subject monsters|killed|john|nil} '==' monsters}

{Test {Subject rex|eats|alpo|nil} '==' rex}

{Test {Verb rex|eats|alpo|nil} '==' eats}

{Test {Verb sarah|accuses|media|nil} '==' accuses}

{Test {Verb joe|enjoys|dancing|nil} '==' enjoys}

{Test {Object joe|enjoys|dancing|nil} '==' dancing}

{Test {Object cindy|sings|rock|nil} '==' rock}

{Test {Object bacteria|kill|humans|nil} '==' humans}

{DoneTesting}

Figure 1: Tests for problem 3 found in SentenceOpsTest.oz.

4. (13 points) [Concepts] Read sections 1.5-1.14 of the textbook and then do the quiz named “Oz Programming
Models (Chapter 1)” on webcourses.

5. (5 points) [Concepts] What happens when the following code executes in Oz? Briefly explain why that happens.
(Note that the notation msg(value: X) makes a record, with one field, value, containing X.)

local X in
local Y in

{Browse starting}

X = 1

{Browse msg(x: X y:Y)}

X = Y+1

{Browse msg(x: X y: Y)}

end
end

Read section 1.15 of the textbook and answer the following questions.

6. (5 points) [Concepts] According to chapter 1, what problems does nondeterminism cause in concurrent
programming?

Please put your answer into the answer box on webcourses.

4

Regular Problems

We expect you’ll do the problems in this section after reading the entire chapter. However, you can probably do some
of them after reading only part of the chapter.

The textbook problems are from the Concepts, Techniques and Models of Computer Programming book [VH04,
section 1.18].

7. (5 points) [UseModels]

In Oz, write a function

MakeSentence: <fun {$ <Atom> <Atom> <Atom>}: <List Atom>>

that takes three atoms, S, V, and O, and returns a three-element list whose first element is S, second element is V,
and third element is O.

Your solution’s Oz code should be in a file MakeSentence.oz.

You must test your code using Mozart/Oz. After doing your own tests (with Show or Browse) you must run our
tests, shown in Figure 2. To do this, put your file MakeSentence.oz and our test file MakeSentenceTest.oz in the
same directory. Then run our tests by feeding the buffer MakeSentenceTest.oz to Oz. You will have to look at
the *Oz Emulator* buffer to see the output. Copy the contents of the *Oz Emulator* and paste them into the
answer box on webcourses. Then upload your MakeSentence.oz file to the assignment as an attachment. (See
also the general directions at the beginning of this homework.)

% $Id: MakeSentenceTest.oz,v 1.1 2012/01/11 15:51:50 leavens Exp leavens $

\insert 'MakeSentence.oz'

\insert 'TestingNoStop.oz'

{StartTesting 'MakeSentenceTest $Revision: 1.1 $'}

% If you fix your code, then you may have to restart Oz to make these pass...

{Test {MakeSentence penny ate borscht} '==' [penny ate borscht]}

{Test {MakeSentence monsters killed john} '==' [monsters killed john]}

{Test {MakeSentence rex eats alpo} '==' [rex eats alpo]}

{Test {MakeSentence sarah accuses media} '==' [sarah accuses media]}

{Test {MakeSentence joe enjoys dancing} '==' [joe enjoys dancing]}

{Test {MakeSentence cindy sings rock} '==' [cindy sings rock]}

{Test {MakeSentence bacteria kill humans} '==' [bacteria kill humans]}

{DoneTesting}

Figure 2: Testing code for problem 7.
.

If you have trouble running our tests, see the troubleshooting section of the course’s running Oz page. If that
doesn’t help, contact the course staff.

See the course examples page for many examples of Oz functions.

8. (10 points) [UseModels]

Do problem 5 in chapter 1, lazy evaluation.

Please put your answer in the answer box on webcourses.

http://www.eecs.ucf.edu/~leavens/COP4020/running_oz.shtml#troubleshooting
http://www.eecs.ucf.edu/~leavens/COP4020/examples/index.html

5

9. [Concepts]

Consider the code for ReserveSeat in Figure 3, which is also included in the files available for download with
this homework from Webcourses (see the attachments to problem 1).

% $Id: ReserveSeat.oz,v 1.1 2012/01/11 15:51:50 leavens Exp leavens $

declare
TheSeat = {NewCell nobody}

proc {ReserveSeat Who}

if @TheSeat == nobody

then
{Delay {OS.rand} mod 30} % comment out for part (b), discussed in part (c)

TheSeat := Who

end
end

local Done A B C D E F G in
thread {ReserveSeat ann} Done=A end
thread {ReserveSeat bill} A=B end
thread {ReserveSeat carla} B=C end
thread {ReserveSeat don} C=D end
thread {ReserveSeat ellen} D=E end
thread {ReserveSeat frank} E=F end
thread {ReserveSeat gina} F=G end
G=unit

{Wait Done}

{System.showInfo @TheSeat}

{System.showInfo "."}

end

Figure 3: Oz code in the file ReserveSeat.oz, which is included in the hw1-test.zip file.

For this problem, please put your answers in the answer box on webcourses, and clearly indicate which part of
your answer goes with each part of the question.

(a) (5 points) What symbol is shown (in the emulator on the line above the dot that shows that the run is
complete) when you feed ReserveSeat.oz to Oz? Do you get the same output each time?

(b) (5 points) What is shown in the emulator when you comment out the indicated line; that is if you comment
out the line containing {Delay {OS.random} mod 30}?
Note that the definition of Oz permits an Oz virtual machine to introduce delays where the statement
{Delay {OS.rand}} appears in Figure 3.

(c) (5 points) Suppose the threads in Figure 3 were created at unpredictable times by HTTP requests. Would
you recommend the way Figure 3 is coded (with the {Delay {OS.rand}} commented out) as a reliable way
to achieve the effect of giving the seat to the first visitor to the associated website? Answer “yes” or “no”
and give a brief reason.

Points
This homework’s total points: 93.

References
[Gra04] Paul Graham. Hackers and Painters – Big Ideas from the Computer Age. O’Reilly, 2004.

https://webcourses.ucf.edu/

6

[VH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming. The MIT
Press, Cambridge, Mass., 2004.

