
COP 4020 — Programming Languages 1 April 8, 2009

Homework 5: Message Passing
See Webcourses and the syllabus for due dates.
In this homework you will learn about the message passing model and basic techniques of programming in that
model. The programming techniques include using port objects to create agents (state machines)[Concepts]
[UseModels]. A few problems also make comparisons with the other models we have studied, and also with message
passing features in other languages [EvaluateModels] [MapToLanguages].
Your code should be written in the message passing model, so must not use cells and assignment in your Oz
solutions. Furthermore, note that the message passing model does not include the primitive IsDet or the library
function IsFree; thus you are also prohibited from using either of these functions in your solutions. Although you
can simulate cells using the message passing model (see problem 8), you should avoid using this simulation directly,
instead use the message queue of a port object to track the state of a port object; doing this will both follow the
programming model and make it clear what the state of each port object is.
You should use helping functions whenever you find that useful. Unless we specifically say how you are to solve a
problem, feel free to use any functions from the Oz library (base environment), especially functions like Map and
FoldR.
For all Oz programing tasks, you must run your code using the Mozart/Oz system. For these you must also provide
evidence that your program is correct (for example, test cases). Oz code with tests for various problems is available in
a zip file, which you can download from the course resources web page or from problem 1’s assignment on
Webcourses. If the tests don’t pass, please try to say why they don’t pass, as this enhances communication and makes
commenting on the code easier and more specific to your problem.
Turn in (on Webcourses) your code and, if necessary, output of your testing for all questions that require code. Please
upload text files with your code that have the suffix .oz (or .java as appropriate), and text files with suffix .txt that
contain the output of your testing. Please use the name of the main function as the name of the file. (In any case,
don’t put any spaces in your file names!)
Your code should compile with Oz, if it doesn’t you probably should keep working on it. If you don’t have time, at
least tell us that you didn’t get it to compile.
If we provide tests and your code passes all of them, you can just indicate with a comment in the code that your code
passes all the tests. Otherwise it is necessary for you to provide us test code and/or test output. If the code does not
pass some tests, indicate in your code with a comment what tests did not pass, and try to say why, as this enhances
communication and makes commenting on the code easier and more specific to your problem than just leaving the
buggy code without comments.
Don’t hesitate to contact the staff if you are stuck at some point.
Read Chapter 5 of the textbook [VH04]. (See the syllabus for optional readings.)

Reading Problems
The problems in this section are intended to get you to read the textbook, ideally in advance of class meetings.

Read chapter 5, through section 5.1 of the textbook [VH04] and answer the following questions.

1. (5 points) [Concepts] [EvaluateModels]

Briefly describe how the concept of a port in the message passing model overcomes the limitations of the
declarative concurrent model.

https://webcourses.ucf.edu/
http://www.eecs.ucf.edu/~leavens/COP4020/syllabus.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutUseModels
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutEvaluateModels
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutMapToLanguages
http://www.eecs.ucf.edu/~leavens/COP4020/hw-tests/hw5-tests.zip
http://www.eecs.ucf.edu/~leavens/COP4020/resources.shtml
https://webcourses.ucf.edu/

2

Read chapter 5, through section 5.2 of the textbook [VH04] and answer the following questions. For examples of
uses of NewPortObject, see the code examples page.

2. [Concepts] [UseModels]

(a) (5 points) By default, are message executed concurrently by a server created using NewPortObject?

(b) (5 points) When can you use NewPortObject2 in a program, as opposed to using NewPortObject? (That is,
how is NewPortObject2 used differently from NewPortObject?)

3. (5 points) [Concepts] [MapToLanguages]

A port object created by NewPortObject is like a monitor, as would be programmed in Java by using
synchronized methods. The analogy is that port objects created by NewPortObject process one method at a time,
in much the same way a Java class with synchronized methods processes one method call at a time. However,
these two programming techniques are not exactly the same.

Name one way that a Java monitor is different than a port object. That is, name a mechanism that Java supports
as a primitive that the programming model of NewPortObject does not support. Hint: think about the features of
the Java model and which parts of that model are not available directly to the Oz programmer when using
NewPortObject.

Read chapter 5, through section 5.3 of the textbook [VH04] and answer the following questions.

4. (5 points) [Concepts]

Describe one technique for programming callbacks in the message passing model.

Read chapter 5, through section 5.4 of the textbook [VH04] and answer the following questions.

5. (5 points) [Concepts] [UseModels]

What kind of components does the book recommend using with the message passing model for programming?

Read chapter 5, through section 5.5 of the textbook [VH04] and answer the following questions.

6. (5 points) [Concepts] [UseModels]

Explain in your own words how the Controller uses the Timer in the Lift simulation program.

Read chapter 5, through section 5.7 of the textbook [VH04] and answer the following questions.

7. (5 points) [Concepts] [MapToLanguages]

Briefly describe how the patterns in Erlang’s receive expression resemble the patterns in Oz’s case expressions.

http://www.eecs.ucf.edu/~leavens/COP4020/examples/index.html

3

Regular Problems

Message Passing Semantics and Expressiveness

For the problems in this subsection, see especially sections 5.1 and 5.2 of the textbook [VH04].

8. (30 points) [Concepts] [UseModels]

Using Oz’s message passing model, implement a data abstraction <Box>, by writing the following functions and
procedures.

NewBox: <fun {$ <Value>}: <Box>>
BoxExchange: <proc {$ <Box> <Value> <Value>}>
BoxAssign: <proc {$ <Box> <Value>}>
BoxAccess: <fun {$ <Box>}: <Value>>

A Box is like a Cell, in that it holds a value (of any type). The function call {NewBox X} returns a new Box
containing the value X. The procedure call {BoxExchange B Old New} atomically binds Old to the value in box B
and makes New be the new value contained in Box B. The procedure call {BoxAssign B V} makes the value V be
the new value of Box B. The function call {BoxAccess B} returns the value contained in Box B.

Your code should pass the tests shown in Figure 1 on the following page

You should use the NewPortObject.oz file, given in the book and supplied with the test cases for this homework,
in your solution. (Hint: represent a Box with a port object, have NewBox return a port, and have the other
functions send messages to the port. The state of the port object will be the Box’s value.)

You are not allowed to use cells in your solution!

9. (20 points) [Concepts] [UseModels]

Using Cells, but without using the message passing primitives NewPort and Send, define in Oz an ADT
PortAsCell, which acts like the built-in port type, but is represented as a Cell. (For more about the imperative
model and cells, look back at Section 1.12 of the textbook or forward to chapter 6.) The PortAsCell ADT has
two operations:

MyNewPort: <fun {$ <Stream>}: <PortAsCell>>
MySend: <proc {$ <PortAsCell> <Value>}>,

which are intended to act like NewPort and Send. That is, the function MyNewPort takes an undetermined store
variable, and returns a <PortAsCell>, which is a Cell that we want to act like a Port. The procedure MySend takes
such a PortAsCell and a Value and adds the Value to the corresponding stream. In other words, the idea behind
the ADT <PortAsCell> is that it should act like the built-in Port ADT of Oz, but be represented using Cells.

For this problem, don’t worry about catching or prohibiting improper uses of the stream argument to MyNewPort
(see Problem 19 on page 16). Also for the moment, don’t worry about potential race conditions when multiple
threads are used.

Hint: look at the semantics for NewPort and Send in section 5.1 of the textbook, which shows how these work in
terms of the mutable memory. Mutable memory is like a collection of cells. Think of the port name as being
represented by the cell’s identity. The cell holds the undetermined store variable that is the end of the list. Note
how the semantics of Send manipulates the mutable memory and works with new undetermined store variables.

Your code should pass the tests shown in Figure 2 on page 5.

You are not allowed to use Send, NewPort, or functions that call them (such as NewPortObject) in your solution.

4

% $Id: BoxTest.oz,v 1.2 2009/04/04 21:53:56 leavens Exp leavens $

\insert ’Box.oz’

\insert ’TestingNoStop.oz’

declare B1 B2 V1old V2old

{StartTesting ’Box operations’}

B1 = {NewBox 1}

B2 = {NewBox 2}

{BoxExchange B1 V1old 7}

{BoxExchange B2 V2old 99}

{Test V1old ’==’ 1}

{Test V2old ’==’ 2}

declare V1x V2x

{BoxExchange B1 V1x 88}

{BoxExchange B2 V2x 333}

{Test V2x ’==’ 99}

{Test V1x ’==’ 7}

{Test {BoxAccess B1} ’==’ 88}

{Test {BoxAccess B2} ’==’ 333}

{Test {BoxAccess B2} ’==’ 333}

{Test {BoxAccess B1} ’==’ 88}

{BoxAssign B1 4}

{Test {BoxAccess B1} ’==’ 4}

{Test {BoxAccess B2} ’==’ 333}

{BoxAssign B1 asymbolliteral}

{Test {BoxAccess B1} ’==’ asymbolliteral}

declare
X=1 Y=2 Z=3

B={NewBox Z}

{StartTesting ’Some equations’}

{Test {BoxAccess {NewBox X}} ’==’ X}

{BoxAssign B Y}

{Test {BoxAccess B} ’==’ Y}

{StartTesting done}

Figure 1: Testing code for Problem 8 on the previous page.

5

% $Id: PortAsCellTest.oz,v 1.2 2009/04/04 21:53:56 leavens Exp leavens $

\insert ’PortAsCell.oz’

\insert ’TestingNoStop.oz’

{StartTesting ’MyNewPort’}

% Simulating basic semantics of NewPort and Send

declare Strm Port in
Port = {MyNewPort Strm}

{StartTesting ’MySend’}

{MySend Port 3}

{MySend Port 4}

% Must use List.take, otherwise Test suspends...

{Test {List.take Strm 2} ’==’ [3 4]}

{MySend Port 5}

{MySend Port 6}

{Test {List.take Strm 4} ’==’ [3 4 5 6]}

{StartTesting ’MyNewPort second part’}

declare S2 P2 U1 U2 in
P2 = {MyNewPort S2}

{StartTesting ’MySend second part’}

{MySend P2 7}

{MySend P2 unit}
{MySend P2 true}
{MySend P2 U1}

{MySend P2 hmmm(x:U2)}

U1 = 4020

{Test {List.take S2 5} ’==’ [7 unit true 4020 hmmm(x:U2)]}

{Test {List.take Strm 4} ’==’ [3 4 5 6]}

{StartTesting done}

Figure 2: Testing code for Problem 9 on page 3.

6

10. [Concepts] [EvaluateModels]

This problem concerns the expressive power of the message passing model in comparison to the imperative
model.

(a) (5 points) Can the Box ADT of Problem 8 on page 3 do everything that a Cell can do in Oz? Briefly explain.

(b) (5 points) Can the PortAsCell ADT of Problem 9 on page 3 do everything that a Port can do in a sequential
Oz program? Briefly explain.

(c) (10 points) Does your implementation of the PortAsCell ADT of Problem 9 on page 3 have any potential
race conditions when used in an Oz program with multiple threads? That is, is it possible that MyNewPort or
MySend act differently than NewPort and Send when there are multiple threads? Briefly explain your answer.

(d) (5 points) Is there any significant difference in expressive power between adding Cells or adding NewPort
and Send to the kernel language?

Message Passing Programming

For additional examples of message passing programming, see also the code examples page.

11. (10 points) [UseModels]

Using Oz’s message passing model, write a function NewGauge that takes no arguments and returns a port object.
The returned port object should store an integer value in its state and can respond to the messages up, down, and
fetch(Var). Initially the value stored in the port object is 0. The message up increments this value and down
decrements it. The fetch(Var) message binds Var to the current value. Figure 3 on the following page contains
some examples.

You should use NewPortObject in your solution (see the textbook, and the NewPortObject.oz file supplied with
the test cases for this homework).

12. (40 points) [UseModels]

Using Oz’s message passing model, write a function NewCatalog that takes no arguments and returns a port
object that acts as a catalog.

The returned port object understands several messages. The add(Key Value) message adds an association
between the Key and the Value; the added association replaces any previous association in the catalog whose key
is Key. The lookup(Key WhatValue) message takes key value, Key, and an undetermined store variable,
WhatValue; if Key is associated with a value, that value is unified with WhatValue; if Key is not associated with a
value, then the port object remembers the lookup request and if an add message of the form add(K V) arrives,
where K == Key, then the port object binds WhatValue to V .

Figure 4 on page 8 contains some examples.

You should use NewPortObject in your solution.

Hint: you may want to use helping functions or procedures.

http://www.eecs.ucf.edu/~leavens/COP4020/examples/index.html

7

\insert ’Gauge.oz’

\insert ’TestingNoStop.oz’

declare
{StartTesting ’Gauge’}

MyGauge = {NewGauge}

{Test local R in {Send MyGauge fetch(R)} R end ’==’ 0}

{Send MyGauge up}

{Test {Send MyGauge fetch($)} ’==’ 1}

{Send MyGauge up}

{Test {Send MyGauge fetch($)} ’==’ 2}

{Send MyGauge down}

{Test {Send MyGauge fetch($)} ’==’ 1}

{Send MyGauge up}

{Send MyGauge up}

{Test {Send MyGauge fetch($)} ’==’ 3}

MyGauge2 = {NewGauge}

{Test {Send MyGauge2 fetch($)} ’==’ 0}

{Send MyGauge2 down}

{Test {Send MyGauge2 fetch($)} ’==’ ~1}

{Send MyGauge2 down}

{Test {Send MyGauge2 fetch($)} ’==’ ~2}

for I in 1..12 do {Send MyGauge2 up} end
{Test {Send MyGauge2 fetch($)} ’==’ 10}

{StartTesting done}

Figure 3: Testing code for Problem 11 on the previous page.

8

\insert ’Catalog.oz’

\insert ’TestingNoStop.oz’

{StartTesting ’NewCatalog’}

declare
MyCat = {NewCatalog} % (Meow! :-)

local What BKStre What2 What3 What4 What27 What5 in
{StartTesting ’add then lookup’}

{Send MyCat add(true false)}
{Test {Send MyCat lookup(true $)} ’==’ false}
{Send MyCat add("EBay" ebay)}

{Send MyCat lookup("EBay" What)}

{Test What ’==’ ebay}

{Test {Send MyCat lookup("EBay" $)} ’==’ ebay}

{StartTesting ’lookup then add’}

{Send MyCat lookup("Amazon" BKStre)}

{Send MyCat add("Amazon" bookstore)}

{Test BKStre ’==’ bookstore}

{StartTesting ’persistence’}

{Test {Send MyCat lookup("Amazon" $)} ’==’ bookstore}

{Send MyCat lookup("EBay" What2)}

{Test What2 ’==’ ebay}

{StartTesting ’changing added value’}

{Send MyCat add("EBay" ’auction house’)}

{Send MyCat lookup("EBay" What3)}

{Test What3 ’==’ ’auction house’}

{Send MyCat lookup(27 What27)}

{Send MyCat lookup(4 What4)}

{Send MyCat add(5 ’first try’)}

{Test {Send MyCat lookup(5 $)} ’==’ ’first try’}

{Send MyCat add(4 ’not a prime’)}

{Send MyCat add(27 ’good hailstone argument’)}

{Send MyCat add(5 ’second try’)}

{Test {Send MyCat lookup(5 $)} ’==’ ’second try’}

{Send MyCat add(5 ’first odd non prime’)}

{Send MyCat lookup(5 What5)}

{Test What4 ’==’ ’not a prime’}

{Test What27 ’==’ ’good hailstone argument’}

{Test What5 ’==’ ’first odd non prime’}

end
DotCom = {NewCatalog}

local WhatCat WhatCat2 WhatStore WhatPaper What4 WhatMore in
{Send DotCom add(’MyCat’ MyCat)}

{Send DotCom lookup(’MyCat’ WhatCat)}

{Send WhatCat lookup("Amazon" WhatStore)}

{Test WhatStore ’==’ bookstore}

{Send DotCom lookup(’New York Times’ WhatPaper)}

{Send DotCom add(’New York Times’ ’the New York Times website’)}

{Test WhatPaper ’==’ ’the New York Times website’}

{Send DotCom lookup(’MyCat’ WhatCat2)}

{Send WhatCat2 lookup(4 What4)}

{Test What4 ’==’ ’not a prime’}

thread {Test WhatMore ’==’ ’delayed’} end
{Send WhatCat lookup(’More’ WhatMore)}

{Send WhatCat add(’More’ ’delayed’)}

end {StartTesting done}

Figure 4: Testing for Problem 12 on page 6.

9

13. (20 points) [UseModels]

Using Oz’s message passing model, write a function NewAuctioneer that takes no arguments and returns a port
object that acts as an auctioneer (an agent that is selling an item in an auction).

This port object understands several messages. The bid(Amt DidIWin) message places a bid on the item, where
Amt is a non-negative integer (the number of dollars bid) and DidIWin is an undetermined store variable.

The stop message ends the auction. When the stop message is received, the DidIWin variable in the first bid
message received whose Amt was the largest is bound to true, and all other DidIWin variables in other bid
messages are bound to false. (Note that there may be no bids. In case of a tie, the first bid message received by
the port with the highest amount wins. If any bid message is received after the stop message, it does not win.
You can assume that only one stop message is ever sent to the port object.)

Figure 5 on the following page contains some examples.

You should use NewPortObject in your solution (see the textbook, and the NewPortObject.oz file supplied with
the test cases for this homework).

Hint: you may want to use helping functions or procedures.

14. (30 points) [UseModels]

Using Oz’s Message Passing model, write a function NewThermostat that takes a port object Heater as an
argument, and returns a port object. The returned port object acts as a thermostat that controls the heater by
sending it messages of the form run(N), where N is a number between 0 and 10 (inclusive), with level 0 being
“off” and level 10 being maximum heat.

The thermostat port object responds to the following messages:

• currentReading(T), where T is an integer, which tells the thermostat that the temperature of the system is
T degrees.

• setPoint(S), where S is an integer, which tells the thermostat the user’s wish for the system’s desired
temperature.

When created the thermostat first sends a run(0) message to the heater port object. This makes the heater’s level
(N) start at 0. The initial set point (desired temperature, S) of the system is 80 degrees. We also assume that the
current temperature (T) at the start is also 80 degrees.

Following this initialization the thermostat responds to each message it receives by sending a message to the
heater. Suppose the heater is currently set to run at level N , the current set point is S, and the current system
temperature is T .

If a message currentReading(T ′) arrives, then the thermostat sends the message run(N ′) to the heater, where
N ′ is 0 if N is 0 and −2 ≤ T ′ − S, and otherwise (if either N is nonzero and T ′ − S < −2) it makes N ′ be the
minimum of b−(T ′ − S)/2c and 10.

If a message setPoint(S′) arrives, then the thermostat sends the message run(N ′) to the heater, where N ′ is 0
if N is 0 and −2 ≤ T − S′, and otherwise (if either N is nonzero and T − S′ < −2) it makes N ′ be the
minimum of b−(T − S′)/2c and 10.

Also, whenever a message is received the current heater level, system temperature, and set point are
appropriately updated.

You should assume that no other agents send messages to the heater object; thus the heater object passed as the
argument to the NewThermostat function is “owned” by that function.

Your code should not have any repeated code; we will take points off for repeated code.

Hints: Recall that in Oz, D div 2 computes bD/2c. Use NewPortObject. To avoid repeated code, you may need
to use local to declare dataflow variables, and some statements that define the values of these dataflow variables.
(But remember that you cannot use Cells in this problem.) Note that in Oz, when an expression is needed, you
can use a series of statements followed by an expression.

Figure 6 on page 11 contains some examples.

10

\insert ’Auctioneer.oz’

\insert ’TestingNoStop.oz’

declare
{StartTesting ’Auctioneer’}

MyAer = {NewAuctioneer}

local Status1 Status2 Status3 Status4 in
{Send MyAer bid(8 Status1)}

{Send MyAer bid(17 Status2)}

{Send MyAer bid(27 Status3)}

{Send MyAer bid(24 Status4)}

{Send MyAer stop}

{Test Status1 ’==’ false}
{Test Status2 ’==’ false}
{Test Status3 ’==’ true}
{Test Status4 ’==’ false}

end
MyAer2 = {NewAuctioneer}

local Status1 Status2 Status3 Status4

Status5 Status6 Status7

in
{Send MyAer2 bid(100 Status1)}

{Send MyAer2 bid(15 Status2)}

{Send MyAer2 bid(99 Status3)}

{Send MyAer2 bid(99 Status4)}

{Send MyAer2 bid(100 Status5)}

{Send MyAer2 bid(100 Status6)}

{Send MyAer2 bid(100 Status7)}

{Send MyAer2 stop}

{StartTesting ’first of the highest bids wins’}

{Test Status1 ’==’ true}
{Test Status2 ’==’ false}
{Test Status3 ’==’ false}
{Test Status4 ’==’ false}
{Test Status5 ’==’ false}
{Test Status6 ’==’ false}
{Test Status7 ’==’ false}

end
{StartTesting done}

{StartTesting ’stopping with no bids’}

MyAer3 = {NewAuctioneer}

{Send MyAer3 stop}

{StartTesting ’bidding after an auction is over loses’}

{Test {Send MyAer3 bid(50 $)} ’==’ false}
{Test {Send MyAer bid(999 $)} ’==’ false}

Figure 5: Testing for Problem 13 on the previous page.

11

\insert ’Thermostat.oz’

\insert ’TestingNoStop.oz’

declare
{StartTesting ’Thermostat’}

local Commands Heater Thermo in
Heater = {NewPort Commands}

Thermo = {NewThermostat Heater}

{Test {List.take Commands 1} ’==’ [run(0)]}

{Send Thermo currentReading(78)}

{Test {List.take Commands 2} ’==’ [run(0) run(0)]}

{Send Thermo currentReading(77)}

{Test {List.take Commands 3} ’==’ [run(0) run(0) run(1)]}

{Send Thermo currentReading(70)}

{Test {Nth Commands 4} ’==’ run(5)}

{Send Thermo setPoint(72)}

{Test {Nth Commands 5} ’==’ run(1)}

{Send Thermo currentReading(68)}

{Test {Nth Commands 6} ’==’ run(2)}

{Send Thermo currentReading(71)}

{Test {Nth Commands 7} ’==’ run(0)}

{Send Thermo currentReading(70)}

{Test {Nth Commands 8} ’==’ run(0)}

end
local Commands Heater Thermo in

Heater = {NewPort Commands}

Thermo = {NewThermostat Heater}

{Test {Nth Commands 1} ’==’ run(0)}

{Send Thermo setPoint(82)}

{Test {Nth Commands 2} ’==’ run(0)}

{Send Thermo setPoint(83)}

{Test {Nth Commands 3} ’==’ run(1)}

{Send Thermo setPoint(84)}

{Test {Nth Commands 4} ’==’ run(2)}

{Send Thermo currentReading(77)}

{Test {Nth Commands 5} ’==’ run(3)}

{Send Thermo currentReading(54)}

{Test {Nth Commands 6} ’==’ run(10)}

{Send Thermo currentReading(64)}

{Test {Nth Commands 7} ’==’ run(10)}

{Send Thermo setPoint(70)}

{Test {Nth Commands 8} ’==’ run(3)}

{Send Thermo currentReading(69)}

{Test {Nth Commands 9} ’==’ run(0)}

{Send Thermo setPoint(71)}

{Test {Nth Commands 10} ’==’ run(0)}

end
{StartTesting done}

Figure 6: Testing for Problem 14 on page 9.

12

15. (80 points) [Concepts] [UseModels] [MapToLanguages]

Do problem 7 in section 5.9 of the textbook [VH04] (Erlang’s receive as a control abstraction). Put your code
that solves this problem in a file Mailbox.oz.

Note that, according to the book’s errata, when the D argument to Mailbox.receive has the form T#E, then E
should be a zero-argument function.

Some testing for this is shown in Figure 7 on the following page and Figure 8 on page 14.

Some hints follow.

Be sure to read section 5.7.3 in the textbook. Figure 5.21 in particular explains the semantics of receive,
although you are not going to code that directly.

In the problem, the name Mailbox is a variable identifier that is bound to a record containing three fields: new,
send, and receive. Thus in outline your code should do something like the following.

declare
local

% ...
fun {New} ... end
proc {MSend C M} ... end
fun {MReceive C PGL D} ... end

in
Mailbox = mailbox(new:New send:MSend receive:MReceive)

end

Now Mailbox.new denotes the function New, since it does a record selection on the Mailbox record.

In essence, your function New will return a port object (or something that contains a port object), which you will
make by calling NewPortObject. Then MSend and MReceive will send messages to the port object passed as their
first argument (or contained in their first argument). However, MSend and MReceive do very little themselves. In
particular, MReceive can pass along its arguments PGL and D in a message, so that the port object (which has the
appropriate state) can do the work.

The port object should contain a list (or queue) of unprocessed messages in its state. It is helpful to think of the
port object as having two states, one in which it is receiving (i.e., still processing a receive), and another in which
it is not receiving. You can use a timer like the one in Figure 5.8 for timeouts, but you may need to modify it to
suit this problem. You may also find it helpful to write out a finite state machine in order to help your design.

13

\insert ’Mailbox.oz’

\insert ’TestingNoStop.oz’

declare
%% conditions for testing (guards), used only for testing purposes

fun {Else X} true end
fun {Equals Val} fun {$ X} X == Val end end
fun {GreaterThan Val} fun {$ X} X > Val end end
fun {LessThan Val} fun {$ X} X < Val end end
fun {And C1 C2} fun {$ X} {C1 X} andthen {C2 X} end end
fun {Or C1 C2} fun {$ X} {C1 X} orelse {C2 X} end end
fun {Negate C} fun {$ X} {Not {C X}} end end
%% bodies for when guards are true, used only for testing purposes

fun {Id X} X end
fun {Add Y} fun {$ X} X+Y end end
%% Bodies for timeouts,

%% note that this is a zero-argument procedure, contrary to the book!

fun {Timedout} timedout end

{StartTesting ’Mailbox’}

MB={Mailbox.new}

{StartTesting ’send’}

{Mailbox.send MB 4020}

{StartTesting ’receive’}

{Test {Mailbox.receive MB [Else#Id] infinity} ’==’ 4020}

{StartTesting ’send and receive of unbound’}

{Mailbox.send MB _}

{Test {Not {IsDet {Mailbox.receive MB [Else#Id] infinity}}} ’==’ true}

{StartTesting ’Multiple sends and receives’}

{Mailbox.send MB 340}

{Mailbox.send MB 99}

{Test {Mailbox.receive MB [Else#Id] infinity} ’==’ 340}

{Test {Mailbox.receive MB [Else#Id] infinity} ’==’ 99}

{StartTesting ’Receive based on guards’}

{Mailbox.send MB 11}

{Mailbox.send MB 340}

{Mailbox.send MB 99}

{Mailbox.send MB 33}

{Test {Mailbox.receive MB [{Equals 99}#Id] infinity} ’==’ 99}

{Test {Mailbox.receive MB [Else#Id] infinity} ’==’ 11}

{Test {Mailbox.receive MB [{Equals 33}#Id] infinity} ’==’ 33}

{Test {Mailbox.receive MB [Else#Id] infinity} ’==’ 340}

Figure 7: Testing for the textbook’s problem 7 (Problem 15 on the preceding page), part 1.

14

{StartTesting ’Receive with multiple guards’}

{Mailbox.send MB 11}

{Mailbox.send MB 340}

{Mailbox.send MB 99}

{Mailbox.send MB 33}

{Mailbox.send MB 10}

{Mailbox.send MB 20}

{Mailbox.send MB 30}

{Test {Mailbox.receive MB [{Equals 99}#Id] infinity} ’==’ 99}

{Test {Mailbox.receive MB [{Equals 99}#Id Else#Id] infinity} ’==’ 11}

{Test {Mailbox.receive MB [{Equals 4}#Id {LessThan 34}#Id Else#Id] infinity}

’==’ 340}

{Test {Mailbox.receive MB [Else#Id Else#{Add 7}] infinity} ’==’ 33}

{Test {Mailbox.receive MB [{Equals 30}#Id {Equals 20}#Id {Equals 10}#{Add 7}]

infinity}

’==’ 17}

{Test {Mailbox.receive MB [{Equals 30}#Id {Equals 20}#Id {Equals 10}#{Add 7}]

infinity}

’==’ 20}

{Test {Mailbox.receive MB [{Equals 30}#Id {Equals 20}#Id {Equals 10}#{Add 7}]

infinity}

’==’ 30}

% Note that receive in Erlang must be done in a process’s mailbox, so,

% while they can be nested there aren’t multiple receive’s happening

% simultaneously.

%% But sends can come from other processes, so can be in threads.

{StartTesting ’Receive that blocks, unblocked by send’}

thread {Delay 1000} {Mailbox.send MB 99} end
thread {Delay 3000} {StartTesting ’sending 5’} {Mailbox.send MB 5} end
thread {Delay 6000} {StartTesting ’sending 72’} {Mailbox.send MB 72} end
{Test {Mailbox.receive MB [{Equals 99}#Id] infinity} ’==’ 99}

{Test {Mailbox.receive MB [{Equals 72}#Id] infinity} ’==’ 72}

{Test {Mailbox.receive MB [{Equals 5}#Id] infinity} ’==’ 5}

%% Note that timeout procedures (like Timedout) are zero-argument procedures

{StartTesting ’Receive with nonzero timeout’}

thread {Delay 1000} {Mailbox.send MB 99} end
thread {Delay 3000} {StartTesting ’sending 5’} {Mailbox.send MB 5} end
thread {Delay 6000} {StartTesting ’sending 72’} {Mailbox.send MB 72} end
{Test {Mailbox.receive MB [{Equals 99}#Id] 20#Timedout} ’==’ timedout}

{Test {Mailbox.receive MB [{Equals 72}#Id] 2000#Timedout} ’==’ timedout}

{Test {Mailbox.receive MB [{Equals 5}#Id] infinity} ’==’ 5}

{Test {Mailbox.receive MB [{Equals 72}#Id] 40000#Timedout} ’==’ 72}

{Test {Mailbox.receive MB [{Equals 99}#Id] infinity} ’==’ 99}

{StartTesting ’Receive with zero timeout’}

{Mailbox.send MB 27}

{Mailbox.send MB 42}

{Test {Mailbox.receive MB [{Equals 42}#Id] 0#Timedout} ’==’ 42}

{Test {Mailbox.receive MB [{Equals 27}#Id] 0#Timedout} ’==’ 27}

{Test {Mailbox.receive MB [{Equals 313}#Id] 0#Timedout} ’==’ timedout}

{StartTesting ’All done’}

Figure 8: Second part of testing for the textbook’s problem 7 (Problem 15 on page 12).

15

Comparisons Among Models

16. (10 points) [EvaluateModels]

Would it have been easier to use the message passing model to solve the square root approximation and
differentiation exercises (numbers 13, 14, and 16) of homework 4? Briefly explain your answer. (You don’t have
to actually solve these problems with the message passing model.)

17. (10 points) [EvaluateModels]

Suppose you are asked to program a simulation of an agent-based auction system for someone doing research in
economics. This system consists of several independent agents, each of which must communicate with a central
auction server to evaluate merchandise, place bids, and make payments.

Among the programming models we studied this semester, what is the most restrictive (i.e., the least expressive
or smallest) programming model that can practically be used program the overall structure of such a system?
Briefly justify your answer.

18. (25 points) [EvaluateModels]

Update your table from homework 4 that lists all the different programming techniques, the characteristics of
problems that are best solved with these techniques (i.e., when to use the techniques), and the name of at least
one example of that technique. In this update, take into account comments from the staff from homework 4, and
add entries for the new row on “message passing.”

programming problem
technique characteristics example(s)
recursion (over grammars)
higher-order functions
stream programming
lazy functions
message passing

16

Extra Credit Problems

19. (20 points; extra credit) [Concepts] [UseModels]

Using read-only views (see Sections 3.7.5 and 13.1.14 of our textbook [VH04]), fix your solution to Problem 9
on page 3 so that your code has the same behavior for improper uses of the stream argument passed to
MyNewPort as does Oz’s built-in NewPort primitive.

You must show, by running your own tests, that your code has the required behavior for such (improper) uses.
Testing is up to you and an important part of this exercise.

20. (60 points; extra credit) [UseModels]

Do part (a) of problem 3 in section 5.9 of the textbook [VH04] (Fault tolerance for the lift control system).

You can get the code for the book’s figures from the textbook’s supplementary web site, which is:
http://www.info.ucl.ac.be/~pvr/ds/mitbook.html or more directly from the book’s supplementary web
directory: http://www.info.ucl.ac.be/~pvr/bookfigures/ or even more directly from Webcourses.

Note that in part (a) “when the floor is called” refers to call messages sent to a Floor port object.

Feel free to make other changes to the code to make it more easy for you to understand and more sensible.

Since deciding when the code works correctly is not easy, you are responsible for your own testing for this
problem. In essence, you should set up a situation where a lift gets blocked on some floor, and make sure that the
floor’s timer is reset and that the blocked lift’s schedule is distributed to other lifts and that the floors aren’t
calling the blocked lift. You can should add extra outputs to see whether the system is functioning as you intend.

Now for some hints.

To get started, overall it’s useful to understand how the state diagrams (like Figure 5.7) relate to the code (like
Figure 5.8’s Timer class). Think about the design at the level of the state diagrams, and then make the
corresponding changes to the code. You may find it useful to look at the diagrams to understand the code (and
vice versa). Also don’t be afraid to introduce new state (or parts of state) and new kinds of messages.

To get started coding, look at the Floor component in Figure 5.10. When it’s in the doorsopen state and it gets a
call message is when the lift is being blocked at a floor. You’ll have to change the code in that spot to start with.
Get it to work reset the timer, perhaps by having the floor remember how many stoptimer messages it should
wait for before telling the lift to close the doors. Then add to the Lift a way to get the schedule, and then figure
out what component should ask for it and redistribute the schedule to other lifts.

Be sure to mark, with comments, any changes you made to the code to solve the problem.

Points
This homework’s total points: 230. Total extra credit points: 80.

References
[VH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming. The MIT

Press, Cambridge, Mass., 2004.

http://www.info.ucl.ac.be/~pvr/ds/mitbook.html
http://www.info.ucl.ac.be/~pvr/bookfigures/

