
COP 4020 — Programming Languages 1 November 28, 2010

Homework 5: Message Passing
See Webcourses and the syllabus for due dates.
In this homework you will learn about the message passing model and basic techniques of programming in that
model. The programming techniques include using port objects to create agents (state machines) [Concepts]
[UseModels]. A few problems also make comparisons with the other models we have studied, and also with message
passing features in other languages [EvaluateModels] [MapToLanguages].
Answers to English questions should be in your own words; don’t just quote text from the textbook.
Your code should be written in the message passing model, so unless we specify otherwise, you must not use cells
and assignment in your Oz solutions. Furthermore, note that the message passing model does not include the
primitive IsDet or the library function IsFree; thus you are also prohibited from using either of these functions in
your solutions. Although you can simulate cells using the message passing model (see problem 3), you should avoid
using this simulation directly, instead use a port object’s state directly. (You can also store state in the message queue
of a port object.) Using the model as it is intended will make it clear what the state of each port object is.
You should use helping functions whenever you find that useful. Unless we specifically say how you are to solve a
problem, feel free to use any non-mutating functions from the Oz library (base environment), especially functions
like Map and FoldR.
For all Oz programing tasks, you must run your code using the Mozart/Oz system. For programming problems for
which we provide tests, you can find them all in a zip file, which you can download from problem 1’s assignment on
Webcourses. If the tests don’t pass, please try to say why they don’t pass, as this enhances communication and makes
commenting on the code easier and more specific to your problem.
Turn in (on Webcourses) your code and also turn in the output of your testing for all exercises that require code.
Please upload code as text files with the name given in the problem or testing file and with the suffix .oz. Please use
the name of the main function as the name of the file. Please either paste into the webcourses answer PCell (preferred)
or upload test output and English answers; If you choose to upload test output or English answers as separate files,
use plain text files with suffix .txt (or PDF files with suffix .pdf). If you have a mix of code and English answers,
you can put the English answers in the webcourses answer PCell (preferred) or use a text file with a .oz file suffix,
and put comments in the file for the English parts. (In any case, don’t put any spaces in your file names!)
Your code should compile with Oz, if it doesn’t you probably should keep working on it. If you don’t have time, at
least tell us that you didn’t get it to compile.
Don’t hesitate to contact the staff if you are stuck at some point.
Read Chapter 5 of the textbook [VH04]. (See the syllabus for optional readings.)

https://webcourses.ucf.edu/
http://www.eecs.ucf.edu/~leavens/COP4020/syllabus.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutUseModels
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutEvaluateModels
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutMapToLanguages
https://webcourses.ucf.edu/

2

Reading Problems
The problems in this section are intended to get you to read the textbook, ideally in advance of class meetings.

Read chapter 5, through section 5.1 of the textbook [VH04] and answer the following questions.

Read chapter 5, through section 5.2 of the textbook [VH04] and answer the following questions. For examples of
uses of NewPortObject, see the code examples page.

1. (5 points) [Concepts] [UseModels] By default, does a server created by using NewPortObject.oz or
NewPortObject2.oz process messages concurrently, or one at a time?

Regular Problems

For these probems, use the NewPortObject.oz or NewPortObjectDebug.oz files that are included with the
homework’s testing files. The NewPortObjectDebug.oz is handy for seeing what is happening (i.e., for
debugging).

Message Passing Semantics and Expressiveness

For the problems in this subsection, see especially sections 5.1 and 5.2 of the textbook [VH04].

2. (0 points) (suggested practice) [UseModels]

Using Oz’s message passing model, write a function NewCounter that takes no arguments and returns a port
object. The returned port object should store an integer value in its state and can respond to the messages inc and
value(Var). Initially the value stored in the port object is 0. The message inc increments this value (adds 1 to
it). The value(Var) message binds Var to the current value in the port object; you can assume that Var is
undetermined. Figure 1 on the following page contains some examples.

You must use NewPortObject in your solution (see the textbook, and the NewPortObject.oz file supplied with
the test cases for this homework).

3. (30 points) [Concepts] [UseModels]

Using Oz’s message passing model, implement a data abstraction <PCell>, by writing the following functions
and procedures.

NewPCell: <fun {$ <Value>}: <PCell>>
PCellSwap: <proc {$ <PCell> <Value> <Value>}>
PCellSet: <proc {$ <PCell> <Value>}>
PCellGet: <fun {$ <PCell>}: <Value>>

A PCell is like a Cell, in that it holds a value (of any type). The function call {NewPCell X} returns a new port
object representing a PCell containing the value X. The procedure call {PCellSwap PC Old New} atomically
binds Old to the value in PCell PC and makes New be the new value contained in PCell PC. The procedure call
{PCellSet PC V} makes the value V be the new value of PCell PC. The function call {PCellGet PC} returns the
value contained in PCell PC.

Note that PCellSwap and PCellSet are procs, not funs. If you make them funs instead, your code will not work
with the tests!

You must use the NewPortObject function, given in the book and supplied with the test cases for this homework,
in your solution. You must represent a PCell with a port object, so have NewPCell return the port of the port
object, and have the other functions send messages to that port. The state of the port object will be the PCell’s
value.)

http://www.eecs.ucf.edu/~leavens/COP4020/examples/index.html

3

% $Id: NewCounterTest.oz,v 1.2 2010/11/29 03:37:51 leavens Exp leavens $

\insert ’NewCounter.oz’

\insert ’TestingNoStop.oz’

declare
{StartTesting ’NewCounterTest $Revision: 1.2 $’}

MyCounter = {NewCounter}

{Test local R in {Send MyCounter value(R)} R end ’==’ 0}

{Send MyCounter inc}

{Test {Send MyCounter value($)} ’==’ 1}

{Send MyCounter inc}

{Test {Send MyCounter value($)} ’==’ 2}

{Send MyCounter inc}

{Send MyCounter inc}

{Test {Send MyCounter value($)} ’==’ 4}

MyCounter2 = {NewCounter}

{Test {Send MyCounter2 value($)} ’==’ 0}

{Send MyCounter2 inc}

{Test {Send MyCounter2 value($)} ’==’ 1}

{Send MyCounter2 inc}

{Test {Send MyCounter2 value($)} ’==’ 2}

for I in 1..12 do {Send MyCounter2 inc} end
{Test {Send MyCounter2 value($)} ’==’ 14}

{StartTesting done}

Figure 1: Testing code for Problem 2 on the previous page.

You are not allowed to use cells in your solution!
Your code should pass the tests shown in Figure 2 on the following page.

4. (0 points) (suggested practice) [Concepts] [UseModels]
Using Cells, but without using the message passing primitives NewPort and Send, define in Oz an ADT
PortAsCell, which acts like the built-in port type, but is represented as a Cell. (For more about the imperative
model and cells, look back at Section 1.12 of the textbook or forward to chapter 6.) The PortAsCell ADT has
two operations:

MyNewPort: <fun {$ <Stream>}: <PortAsCell>>
MySend: <proc {$ <PortAsCell> <Value>}>,

which are intended to act like NewPort and Send. That is, the function MyNewPort takes an undetermined store
variable, and returns a <PortAsCell>, which is a Cell that we want to act like a Port. The procedure MySend takes
such a PortAsCell and a Value and adds the Value to the corresponding stream. In other words, the idea behind
the ADT <PortAsCell> is that it should act like the built-in Port ADT of Oz, but be represented using a Cell.
For this problem, don’t worry about catching or prohibiting improper uses of the stream argument to MyNewPort
(although that is part of the semantics of ports). Also for the moment, don’t worry about potential race conditions
when multiple threads are used.
Since MyNewPort should act like NewPort and you are representing ports as cells, have MyNewPort return a cell
containing the undetermined (stream) variable passed to it. Since MySend should act like Send, it should follow
the semantics given in section 5.1 of the textbook. That is, it should extract the undetermined variable that
represents the (old) end of the stream from the cell passed to it (in the first argument) and then it should make a
new dataflow variable to hold the new end of the stream, put that new dataflow variable in the cell, and then unify
the old end of the stream with a ‘|’-record that holds the data and new end of the stream variable.
Your code should pass the tests shown in Figure 3 on page 5.
You are not allowed to use Send, NewPort, or functions that call them (such as NewPortObject) in your solution,
and you must use Cells in your solution.

4

% $Id: PCellTest.oz,v 1.3 2010/11/29 03:37:51 leavens Exp leavens $

\insert ’PCell.oz’

\insert ’TestingNoStop.oz’

declare % just one this time!

PC1 PC2 V1old V2old V1x V2x % these are variables being declared

{StartTesting ’PCellTest $Revision: 1.3 $’}

PC1 = {NewPCell 1}

PC2 = {NewPCell 2}

{PCellSwap PC1 V1old 7}

{PCellSwap PC2 V2old 99}

{Test V1old ’==’ 1}

{Test V2old ’==’ 2}

{PCellSwap PC1 V1x 88}

{PCellSwap PC2 V2x 333}

{Test V2x ’==’ 99}

{Test V1x ’==’ 7}

EE = {PCellGet PC1}

{Test EE ’==’ 88}

TTT0 = {PCellGet PC2}

{Test TTT0 ’==’ 333}

TTT1 = {PCellGet PC2}

{Test TTT1 ’==’ 333}

EE2 = {PCellGet PC1}

{Test EE2 ’==’ 88}

{PCellSet PC1 4}

Four = {PCellGet PC1}

{Test Four ’==’ 4}

TTT = {PCellGet PC2}

{Test TTT ’==’ 333}

{PCellSet PC1 asymbolliteral}

ASL = {PCellGet PC1}

{Test ASL ’==’ asymbolliteral}

X=1 Y=2 Z=3

PC={NewPCell Z}

{StartTesting ’Some equations’}

{Test {PCellGet {NewPCell X}} ’==’ X}

{PCellSet PC Y}

End = {PCellGet PC}

{Test End ’==’ Y}

% Waits make the done message come out after all the others.

% {Wait TTT0} {Wait TTT1} {Wait ASL} {Wait EE} {Wait EE2} {Wait Four}

% {Wait TTT} {Wait End}

{StartTesting done}

Figure 2: Testing code for Problem 3 on page 2.

5

% $Id: PortAsCellTest.oz,v 1.3 2010/11/29 03:37:51 leavens Exp leavens $

\insert ’PortAsCell.oz’

\insert ’TestingNoStop.oz’

{StartTesting ’PortAsCellTest $Revision: 1.3 $’}

% Simulating basic semantics of NewPort and Send

declare Strm Port in
Port = {MyNewPort Strm}

{StartTesting ’MySend’}

{MySend Port 3}

{MySend Port 4}

% Must use List.take, otherwise Test suspends...

{Test {List.take Strm 2} ’==’ [3 4]}

{MySend Port 5}

{MySend Port 6}

{Test {List.take Strm 4} ’==’ [3 4 5 6]}

{StartTesting ’MyNewPort second part’}

declare S2 P2 U1 U2 in
P2 = {MyNewPort S2}

{StartTesting ’MySend second part’}

{MySend P2 7}

{MySend P2 unit}
{MySend P2 true}
{MySend P2 U1}

{MySend P2 hmmm(x:U2)}

U1 = 4020

{Test {List.take S2 5} ’==’ [7 unit true 4020 hmmm(x:U2)]}

{Test {List.take Strm 4} ’==’ [3 4 5 6]}

{StartTesting done}

Figure 3: Testing code for Problem 4 on page 3.

6

Message Passing Programming

For additional examples of message passing programming, see also the code examples page.

5. (10 points) [UseModels]

Using Oz’s message passing model, write a function NewAccumulator that takes one argument and returns a port
object that accumulates the results of apply messages (see below), starting with the argument as the
accumulator’s initial value. The returned port object responds to the following messages:

• apply(Fun), which applies the one-argument function Fun to the accumulator’s value, and makes the
accumulator remember the result as its new accumulator value, and

• fetch(X), where X is an undetermined dataflow variable.

The result of {NewAccumulator Init} is a port object that remembers Init as its accumulator value.

When the port object receives the apply(Fun) message, it applies Fun to the accumulator’s value, and uses the
result of that call as its new accumulator value.

When the port object receives the fetch(X) message, where X is an undetermined dataflow variable, it unifies
X with the current accumulator value, and leaves the accumulator value unchanged.

Figure 4 gives some tests.

% $Id: NewAccumulatorTest.oz,v 1.2 2010/11/29 03:37:51 leavens Exp leavens $

\insert ’NewAccumulator.oz’

\insert ’TestingNoStop.oz’

declare
{StartTesting ’NewAccumulatorTest $Revision: 1.2 $’}

MyAcc = {NewAccumulator 7}

{Test {Send MyAcc fetch($)} ’==’ 7}

{Send MyAcc apply(fun {$ Val} Val+100 end)}
{Test {Send MyAcc fetch($)} ’==’ 107}

{Send MyAcc apply(fun {$ Val} Val+1 end)}
{Test {Send MyAcc fetch($)} ’==’ 108}

{Send MyAcc apply(fun {$ Val} 2*Val+1000 end)}
{Test {Send MyAcc fetch($)} ’==’ 1216}

{Send MyAcc apply(fun {$ _} 1 end)}
{Test {Send MyAcc fetch($)} ’==’ 1}

A2 = {NewAccumulator 3}

{Test {Send A2 fetch($)} ’==’ 3}

{Send A2 apply(fun {$ Val} Val+4017 end)}
{Test {Send A2 fetch($)} ’==’ 4020}

{Test {Send MyAcc fetch($)} ’==’ 1}

{Send A2 apply(fun {$ Val} val_is(Val) end)}
{Test {Send A2 fetch($)} ’==’ val_is(4020)}

{Send A2 apply(fun {$ val_is(Val)} val_is(Val div 10) end)}
{Test {Send A2 fetch($)} ’==’ val_is(402)}

{Send A2 apply(fun {$ val_is(Val)} Val - 360 end)}
{Test {Send A2 fetch($)} ’==’ 42}

{StartTesting done}

Figure 4: Tests for problem Problem 5.

http://www.eecs.ucf.edu/~leavens/COP4020/examples/index.html

7

6. (20 points) [UseModels]

Using Oz’s message passing model, write a function NewFutureServer that takes no arguments and returns a
port object that acts as a “future server”. A future server remembers a list of requests for the value of a
computation, or a computed result, which is the value of the last computation it was called on to perform.

The returned port object understands the following messages:

• The request(X) message includes an undetermined dataflow variable, X; if the server already has a
computed result, then X is unified with the result. Otherwise if the server does not already have a computed
result, then it remembers this request, in particular it remembers X , and when the server eventually has a
computed result, it unifies X with that result.

• The compute(F) message includes a function F that takes no arguments; this function is run and its result
defines the “computed result” that the server remembers. The computed result is unified with all dataflow
variables from previous unfulfilled requests received by the server.

Note that when the future server already has a computed result, if it receives a compute(F) message, then it uses
the result of {F} as the new computed result, which is used to answer further requests.

Hint: you can store undetermined dataflow variables in a list or other data structure, but be very careful not to try
to pattern match or perform other computations that would need their values. You might try using different kinds
of state records to remember the necessary information in the port object’s state.

Figure 5 contains various tests.

% $Id: NewFutureServerTest.oz,v 1.2 2010/11/29 03:37:51 leavens Exp leavens $

\insert ’NewFutureServer.oz’

\insert ’TestingNoStop.oz’

{StartTesting ’NewFutureServerTest $Revision: 1.2 $’}

declare
FS = {NewFutureServer}

local R1 R2 R3 R4 in
{StartTesting ’initial requests’}

{Send FS request(R1)}

{Send FS request(R2)}

{Send FS request(R3)}

{Delay 1000}

{Send FS compute(fun {$} {Pow 3 24} end)}
{Wait R1}

{Test R1 ’==’ R2}

{Test R2 ’==’ 282429536481}

{Send FS request(R4)}

local R5 in
{Send FS compute(fun {$} {Pow 3 4} end)}
{Send FS request(R5)}

{Test R5 ’==’ 81}

end
end
{StartTesting done}

Figure 5: Testing for Problem 6.

8

7. (20 points) [UseModels]

Using Oz’s message passing model, write a function NewEBay that takes no arguments and returns a port object
that acts as an electronic auction house, like EBay.

This port object understands several messages.

The bid(Amt Info DidIWin) message places a bid on the item, where Amt is a non-negative integer (the number
of dollars bid), Info is some information about the bidder (e.g., their name), and DidIWin is an undetermined
store variable.

The finish message ends the auction and does all notification of the bidders. When the finish message is
received, the DidIWin variable in the first bid message received whose Amt was the largest is bound to true, and
all other DidIWin variables in other bid messages are bound to false. (Note that there may be no bids. In case of
a tie, the first bid message received by the port with the highest amount wins. If any bid message is received
after the finish message, it does not win. You can assume that only one finish message is ever sent to the port
object.)

The whoWon(Winner) message will only be sent after the finish message. This message contains an
undetermined dataflow variable, Winner, which is unified with the Info from the winning bid message (if any),
or the atom none if there were no bids received by the port object.

Note that, to prevent bidders from gaining information before the auction is over, none of the DidIWin variables
sent in the bidmessages may be determined by before the port object receives the finish message. Thus the port
object will have to remember at least the DidIWin variables from all the bids until the finish message is
received.

You should use NewPortObject in your solution (see the textbook, and the NewPortObject.oz file supplied with
the test cases for this homework).

Hint: you may want to use helping functions or procedures.

Figure 6 on the following page contains some examples.

8. (0 points) (suggested practice) [UseModels]

Using Oz’s message passing model, write a function NewResourceArbiter that takes no arguments and returns a
port object that tracks the status of a some resource, such as a printer or access to a critical section of code. (The
exact resource is not important for this problem).

The returned port object responds to the following messages:

• query(X), where X is an undetermined dataflow variable,

• reserve(X), where X is an undetermined dataflow variable, and

• release.

The port object should track a list of (undetermined) dataflow variables that have been sent to it in reserve(X)
messages but not yet granted the resource, and it also should track the current status of the resource. The resource
status can be either: “in use” or “not used.” A newly created port object starts with the resource not used.

When the port object receives the query(X) message, it unifies X with an atom representing the current status
of the resource, which will be either inUse (if the resource is being used) or notUsed (if the resource is not being
used).

When the port object receives the reserve(X) message, the resource status becomes “in use” if it is not already,
but what happens to X and the list of variables waiting depends on the resource’s current status. If the resource is
not currently in use, then it binds X to some atom, allowing the sender, which is a thread that should be waiting
for X to be determined, to proceed. Otherwise, if the resource is in use, then the port object puts X at the end of
the list of variables that represent processes waiting to use the resource.

When the port object receives the release message, what happens depends on the list of dataflow variables
representing waiting threads. If that list is empty, then the resource status changes to being not used. If that list
has some elements, then the first element in the list is unified with some atom (e.g., unit), which lets the thread

9

% $Id: NewEBayTest.oz,v 1.2 2010/04/15 20:36:03 leavens Exp $

\insert ’NewEBay.oz’

\insert ’TestingNoStop.oz’

declare
{StartTesting ’NewEBayTest $Revision$’}

MyEBay = {NewEBay}

local Status1 Status2 Status3 Status4 in
{Send MyEBay bid(8 palin Status1)}

{Send MyEBay bid(17 mccain Status2)}

{Send MyEBay bid(27 bush Status3)}

{Send MyEBay bid(24 romney Status4)}

% losing bids should not yet be determined

{Test {IsDet Status1} ’==’ false}
{Send MyEBay finish}

{Test Status1 ’==’ false}
{Test Status2 ’==’ false}
{Test Status3 ’==’ true}
{Test Status4 ’==’ false}
{Test {Send MyEBay whoWon($)} ’==’ bush}

end
MyEBay2 = {NewEBay}

local Status1 Status2 Status3 Status4

Status5 Status6 Status7

in
{Send MyEBay2 bid(100 agent007 Status1)}

{Send MyEBay2 bid(15 agent86 Status2)}

{Send MyEBay2 bid(99 agent99 Status3)}

{Send MyEBay2 bid(99 agent992 Status4)}

{Send MyEBay2 bid(100 agent1002 Status5)}

{Send MyEBay2 bid(100 agent1003 Status6)}

{Send MyEBay2 bid(100 agent1004 Status7)}

{Send MyEBay2 finish}

{StartTesting ’first of the highest bids wins’}

{Test Status1 ’==’ true}
{Test Status2 ’==’ false}
{Test Status3 ’==’ false}
{Test Status4 ’==’ false}
{Test Status5 ’==’ false}
{Test Status6 ’==’ false}
{Test Status7 ’==’ false}
{Test {Send MyEBay2 whoWon($)} ’==’ agent007}

end
{StartTesting done}

{StartTesting ’finishing with no bids’}

MyEBay3 = {NewEBay}

{Send MyEBay3 finish}

{Test {Send MyEBay3 whoWon($)} ’==’ none}

{StartTesting ’bidding after an auction is over loses’}

{Test {Send MyEBay3 bid(50 mad_hatter $)} ’==’ false}
{Test {Send MyEBay bid(999 alice $)} ’==’ false}
{StartTesting done}

Figure 6: Testing for Problem 7 on the previous page.

10

that is waiting on that dataflow variable proceed, and that variable is taken out of the list of waiting variables and
the resource remains in use.

Figure 7 has some examples.

\insert ’NewResourceArbiter.oz’

\insert ’TestingNoStop.oz’

declare
{StartTesting ’NewResourceArbiterTest $Revision: 1.1 $’}

proc {Acquire Port} % to avoid repeated testing code, for testing only

local WaitVar in {Send Port reserve(WaitVar)} {Wait WaitVar} end
end

RA = {NewResourceArbiter}

{Test {Send RA query($)} ’==’ notUsed}

{Acquire RA}

{Test {Send RA query($)} ’==’ inUse}

{Send RA release}

{Test {Send RA query($)} ’==’ notUsed}

RA2 = {NewResourceArbiter}

local TestStrm P={NewPort TestStrm} in
for ID in 1..2 do

thread {Acquire RA2} {Send P ID} {Delay 5} {Send P ID} {Send RA2 release} end
end
local T4 = {List.take TestStrm 4} in

{Test (T4 == [1 1 2 2] orelse T4 == [2 2 1 1]) ’==’ true}
end

end
{StartTesting done}

Figure 7: Testing for Problem 8 on page 8.

11

Comparisons Among Models

9. (0 points) (suggested practice) [EvaluateModels]

Suppose you are asked to program a simulation of an agent-based auction system for someone doing research in
economics. This system consists of several independent agents, each of which must communicate with a central
auction server to evaluate merchandise, place bids, and make payments.

Among the programming models we studied this semester, what is the most restrictive (i.e., the least expressive
or smallest) programming model that can practically be used program the overall structure of such a system?
Briefly justify your answer.

10. (6 points) [EvaluateModels]

Add a row to your table from homework 4 that listed all the different programming techniques. The row you
should add is for the message passing model. That is for the message passing model:

(a) (3 points) What are the characteristics of problems that are best solved with the message passing model’s
techniques (i.e., when should the message passing model be used)?

(b) (3 points) Describe (i.e., name) one example for which the message passing technique is particularly well
suited.

12

Points
This homework’s total points: 97.

References
[VH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming. The MIT

Press, Cambridge, Mass., 2004.

