
COP 4020 — Programming Languages I October 19, 2009

Homework 3: Declarative Programming
See Webcourses and the syllabus for due dates. Hint: don’t start these problems at the last minute!
In this homework you will learn basic techniques of recursive programming over various types of data, and
abstracting from patterns, higher-order functions, currying, and infinite data [UseModels] [Concepts]. Many of the
problems below exhibit polymorphism [UseModels] [Concepts]. The problems as a whole illustrate how functional
languages work without hidden side-effects [EvaluateModels].
Your code should be written in the declarative model, so do not use cells and assignment in your Oz solutions.
(Furthermore, note that the declarative model does not include the primitive IsDet or the library function IsFree;
thus you are also prohibited from using either of these functions in your solutions.) But please use all linguistic
abstractions and syntactic sugars that are helpful.
Feel free to use helping functions as well. Unless we specifically say how you are to solve a problem, feel free to use
any functions from the Oz library (base environment), especially functions like Map and FoldR.
For all programing tasks, you must run your code using the Mozart/Oz system. For programming problems for which
we provide tests, you can find them all in a zip file, which you can download from Webcourses or from the course
resources web page. Turn in (on Webcourses) your code and the output of your testing for all questions that require
code.
If the tests don’t pass, please try to say why they don’t pass, as this enhances communication and makes commenting
on the code easier and more specific to your problem.
Our tests use the functions in the course library’s TestingNoStop.oz. The Test procedure in this file can be passed
an actual value, a connective (which is used only in printing), and an expected value, as in the following statement.

{Test {CombA 4 3} ’==’ 24 div (6*1)}

The Assert procedure in this file can be passed a Boolean, as in the following statement

{Assert {Comb J I} == {CombB J I}}

Calls to Assert produce no output unless they are passed the argument false. Note that you would not use Browse or
Show around a call to Test or Assert. If you’re not sure how to use our testing code, ask us for help.
Turn in (on Webcourses) your both code and output of your testing for all problems that require code. Please upload
code as text files with the name given in the problem or testing file and with the suffix .oz. Please use the name of the
main function as the name of the file. Please upload test output and English answers as plain text files with suffix
.txt or as entries in the webcourses answer box. If you have a mix of code and English, use a text file with a .oz file
suffix, and put comments in the file for the English parts. (In any case, don’t put any spaces in your file names!)
Your code should compile with Oz, if it doesn’t you probably should keep working on it. If you don’t have time, at
least tell us that you didn’t get it to compile.
Don’t hesitate to contact the staff if you are stuck at some point.
For background, you should read Chapter 3 of the textbook [VH04]. Also read “Following the Grammar” and follow
its suggestions for organizing your code. You may also want to read a tutorial on the concepts of functional
programming languages, such as Hudak’s computing survey article mentioned in the syllabus. See also the course
code examples page (and the course resources page).

https://webcourses.ucf.edu/
http://www.eecs.ucf.edu/~leavens/COP4020/syllabus.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutUseModels
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutUseModels
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutEvaluateModels
http://www.eecs.ucf.edu/~leavens/COP4020/hw-tests/hw3-tests.zip
https://webcourses.ucf.edu/
http://www.eecs.ucf.edu/~leavens/COP4020/resources.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/resources.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/lib.zip
http://www.eecs.ucf.edu/~leavens/COP4020/lib/TestingNoStop.oz
http://www.eecs.ucf.edu/~leavens/COP4020/docs/follow-grammar.pdf
http://www.eecs.ucf.edu/~leavens/COP4020/syllabus.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/examples/index.html
http://www.eecs.ucf.edu/~leavens/COP4020/examples/index.html
http://www.eecs.ucf.edu/~leavens/COP4020/resources.shtml

2

Reading Problems
The problems in this section are intended to get you to read the textbook, ideally in advance of class meetings.

Read chapter 3, through section 3.1 of the textbook [VH04] and answer the following questions.

1. (5 points) [Concepts]

Why is declarative programming useful?

2. (5 points) [Concepts] [MapToLanguages]

Can you write declarative programs in C, C++, or Java? (Answer “yes” or “no” and briefly explain.)

Read section 3.2 of the textbook and answer the following questions.

3. (5 points) [UseModels]

Write an iterative function

FindIndex: <fun {$ <List <Atom>> <Atom>}: <Int>>

that takes a list of atoms LoA and an atom A, and returns the index of the first occurrence of A in LoA, or ~1 if A
does not occur in LoA. The following are examples that you can find in our test file FindIndexTest.oz.

{Test {FindIndex a|b|c|d|a|nil a} ’==’ 1}

{Test {FindIndex a|b|c|d|a|nil b} ’==’ 2}

{Test {FindIndex a|b|c|d|a|nil c} ’==’ 3}

{Test {FindIndex a|b|c|d|a|nil d} ’==’ 4}

{Test {FindIndex a|nil e} ’==’ ~1}

{Test {FindIndex nil hmmm} ’==’ ~1}

{Test {FindIndex [now is the time ’for’ change] ’for’} ’==’ 5}

{Test {FindIndex [now is the time ’for’ change] stasis} ’==’ ~1}

{Test {FindIndex [the code examples page gives access to code examples

related to subjects covered ’in’ ’COP’ ’4020’ ’at’ ’UCF’

as taught by ’Gary’ ’T.’ ’Leavens’] ’Gary’}

’==’ 22}

Your code must have iterative behavior. (So it must use tail recursion!)

Put your code in a file FindIndex.oz. After doing your own testing, run our tests in FindIndexTest.oz. Be sure
to hand in the output of running our tests (see the instructions above).

Skim section 3.3 and read section 3.4 through 3.4.1 of the textbook and answer the following questions.

4. (5 points) [Concepts] Give an example Oz expression, other than leaf, that defines a value of the type
〈BTree Int〉. Recall that a 〈Literal〉 can be an atom such as a or ’true’.

Read section 3.4.2 up to and including section 3.4.2.6 of the textbook, and read the “Following the Grammar”
handout. Then answer the following questions.

5. (8 points) [UseModels]

For each of the functions in Figure 1 on the following page, say whether (i) the function has a correct outline that
follows the grammar for (finite) flat lists, or (ii) if it doesn’t, then briefly explain what the problem is with that
function (i.e., why it does not follow the outline for the flat list grammar).

(Note: you don’t have to judge whether these are correct or not, and you aren’t expected to run them.)

http://www.eecs.ucf.edu/~leavens/COP4020/docs/follow-grammar.pdf

3

1. fun {TalentsOf People}
case People of

P|Ps then {Talent P}|{TalentsOf Ps}
end

end

2. fun {TalentsOf People}
case People of

nil then nil
end

end

3. fun {TalentsOf People}
case People of

hot then sweltering
[] warm then happy
[] cold then freezing
end

end

4. fun {TalentsOf People}
if People == 0
then {Talent People.1} + {TalentsOf People.2}
else 0
end

end

5. fun {TalentsOf People}
case People of

P|Ps then {Talent P}|{TalentsOf Ps}
else nil
end

end

Figure 1: Problem 5.

4

1. fun {RhymesWith Words Sought}
case Words of

W|Ws then
{Append
if {Not {Rhymes Sought W}} then nil else [W] end
{RhymesWith Ws Sought}
}

else nil
end

end

2. fun {RhymesWith Words Sought}
case Words of

orange then nil
[] moon then [june croon swoon]
[] love then [dove glove guv]
end

end

3. fun {RhymesWith Words Sought}
case Words of

W|Ws then if {Not {Rhymes Sought W}}
then {RhymesWith Ws Sought}
else W|{RhymesWith Ws Sought}
end

else nil
end

end

4. fun {RhymesWith Words Sought}
case Words of

W|Ws then
{Append
if {Not {Rhymes Sought W}} then nil else [W] end
{RhymesWith Ws Sought}
}

end
end

5. fun {RhymesWith Words Sought}
case Words of

W|Ws andthen {Rhymes Sought W}
then W|{RhymesWith Ws Sought}

else {RhymesWith Ws Sought}
end

end

Figure 2: Problem 6.

5

6. (8 points) [UseModels]

For each of the functions in Figure 2 on the previous page, say whether (i) the function has a correct outline that
follows the grammar for (finite) flat lists, or (ii) if it doesn’t, then briefly explain what the problem is with that
function (i.e., why it does not follow the outline for the flat list grammar).

(Note: you don’t have to judge whether these are correct or not, and you aren’t expected to run them.)

Read section 3.4.2.7, skim over sections 3.4.4 and 3.4.5, read section 3.4.6, and skim over 3.4.7 and 3.4.8 of the
textbook and answer the following questions.

7. (5 points) [Concepts] [UseModels]

In the declarative programming model, how can a function make a change to a data structure (for example, delete
a key from a tree)?

Read section 3.5 of the textbook (skimming 3.5.3 and 3.5.4) and answer the following questions.

8. [Concepts] [MapToLanguages]

(a) (3 points) How does the textbook advocate using the kernel language to calculate the execution time and
space used by an Oz program? (Give a brief answer without going into details.)

(b) (2 points) Could same approach be used in Java with the Java Virtual Machine’s bytecode language playing
the role of Oz’s kernel language? (Answer “yes” or “no”.)

Read section 3.6 of the textbook and answer the following questions.

9. [Concepts] [MapToLanguages]

(a) (3 points) Briefly describe what the Filter function is useful for.

(b) (2 points) In object-oriented programming, one can make an object with one method that is treated as a
function argument by other methods. Such objects are called strategy objects in the Strategy design pattern
[GHJV95]. Using this idea, is it possible to write a method in Java or C++ that acts like Filter in Oz?
(Answer “yes” or “no”.)

Read section 3.7 of the textbook (you can skim 3.7.3) and answer the following questions.

10. (5 points) [Concepts] [MapToLanguages]

How does one hide the internal representation of an abstract datatype in C++ or Java?

Read section 3.8 of the textbook (you can skim 3.8.1 through 3.8.3) and answer the following questions.

11. (5 points) [Concepts]

Name one kind of standard programming language capability that is not supported by the declarative
programming model, and that is useful in interfacing with the physical world.

Read section 3.9 of the textbook and answer the following questions.

12. (5 points) [Concepts] [MapToLanguages]

6

In what way is a module in Oz like a class in C++ or Java?

Regular Problems

We expect you’ll do the problems in this section after reading the entire chapter. However, should be able to do some
of them after reading only part of the chapter.

Iteration

Material on iteration and tail recursion is found in section 3.2 and 3.4.2.3 and 3.4.3.

13. (10 points) [UseModels]

Do problem 5 in section 3.10 of the textbook [VH04] (iterative SumList).

Put your code in a file SumList.oz. After doing your own testing, run our tests in SumListTest.oz (see below).

% $Id: SumListTest.oz,v 1.1 2009/02/03 05:19:00 leavens Exp leavens $

\insert ’SumList.oz’

\insert ’TestingNoStop.oz’

{StartTesting ’SumList’}

{Test {SumList nil} ’==’ 0}

{Test {SumList 3|nil} ’==’ 3}

{Test {SumList ~2|3|nil} ’==’ 1}

{Test {SumList [7 8 ~2 3]} ’==’ 16}

{Test {SumList [1 0]} ’==’ 24}

{Test {SumList [4 4 2 1 99 105 3004 999999]} ’==’ 1003218}

{StartTesting ’done’}

Following the Grammar

Material on following the grammar is found in section 3.4, especially section 3.4.2, and in detail with many examples
in the “Following the Grammar” handout.

14. (10 points) [UseModels]

Write a function

DeleteAll: <fun {$ <List T> T}: <List T>>

that a list of items of some type T, and an item of type T and returns a list just like the argument list, but with the
each occurrence of the item (if any) removed. Use == to compare the item and the list elements. The following
examples are written using the Test procedure from the course library. They are also found in our testing file
DeleteAllTest.oz.

% $Id: DeleteAllTest.oz,v 1.1 2009/02/03 05:19:00 leavens Exp leavens $

\insert ’TestingNoStop.oz’

\insert ’DeleteAll.oz’

{StartTesting ’DeleteAll’}

{Test {DeleteAll nil 3} ’==’ nil}

{Test {DeleteAll [1 1 2 3 2 1 2 3 2 1] 1} ’==’ [2 3 2 2 3 2]}

{Test {DeleteAll [1 2 3 2 1 2 3 2 1] 1} ’==’ [2 3 2 2 3 2]}

{Test {DeleteAll [1 1 2 3 2 1 2 3 2 1] 4} ’==’ [1 1 2 3 2 1 2 3 2 1]}

{Test {DeleteAll [99 56 3] 3} ’==’ [99 56]}

{StartTesting done}

http://www.eecs.ucf.edu/~leavens/COP4020/docs/follow-grammar.pdf
http://www.eecs.ucf.edu/~leavens/COP4020/lib.zip

7

Put your code in a file DeleteAll.oz and test using our tests.

15. (10 points) [UseModels]

Write a function

DeleteSecond: <fun {$ <List T> T}: <List T>>

that takes a list of items of some type T and an item of type T, and returns a list just like the argument list, but
with the second occurrence of the item (if any) removed. The following is our test file DeleteSecondTest.oz.

% $Id: DeleteSecondTest.oz,v 1.1 2009/02/03 05:19:00 leavens Exp leavens $

\insert ’TestingNoStop.oz’

\insert ’DeleteSecond.oz’

{StartTesting ’DeleteSecond’}

{Test {DeleteSecond nil 3} ’==’ nil}

{Test {DeleteSecond [1 2 3 2 1 2 3 2 1] 1} ’==’ [1 2 3 2 2 3 2 1]}

{Test {DeleteSecond [1 2 3 2 1 2 3 2 1] 4} ’==’ [1 2 3 2 1 2 3 2 1]}

{Test {DeleteSecond [1 2 3] 3} ’==’ [1 2 3]}

{Test {DeleteSecond [3 1 2 3] 3} ’==’ [3 1 2]}

{StartTesting done}

Put your code in a file DeleteSecond.oz and test using our tests.

Hint: you may need a helping function.

8

16. (30 points) [UseModels]

This is a problem about recursion over flat lists. In this problem you will write several functions that operate on
an abstract data type, <Set T> represented as the type <List T>, that is lists whose elements have type T. (In
contrast to a later problem, in this problem, we will only consider finite sets.)

In this problem, we give you some of the code for implementing sets using lists, and ask you to fill in the
remaining code. Our code is available from the Webcourses assignment for this problem. You need to read the
code for the operations we provide to understand it. This code assumes that lists are represented without
duplicate elements. The code considers that X is a duplicate of Y if and only if X == Y .

There is one other complication in the code that we have provided for you. This is that the functions won’t work
until you write some parts of your own code. In particular, our code for the function named AsSet uses the
function Add, which you are to write; so AsSet won’t work and can’t be tested until you write a definition for Add.

Your task is to write each of the following functions on sets (given with their types below).

Add: <fun {$ <Set T> T>}: <Set T>>
Remove: <fun {$ <Set T> T>}: <Set T>>
Union: <fun {$ <Set T> <Set T>>}: <Set T>>
Minus: <fun {$ <Set T> <Set T>>}: <Set T>>
Intersect: <fun {$ <Set T> <Set T>>}: <Set T>>
UnionList: <fun {$ <List <Set T>>}: <Set T>>

All these functions return new sets, none modify or mutate their arguments. (This is functional programming!)
The function Add inserts an item into the set argument, returning a new set containing just the elements of the set
argument and the item. Remove takes an item out of a set (or returns its set argument unchanged if the element
argument was not in the set argument). Union returns the union of its two arguments as a set (i.e., without
duplicates). Minus returns the set of all elements such that every element of the result is an element of the first set
argument, but no element of the result is an element of the second set argument. Intersect returns the set of
elements that are elements of both set arguments. UnionList returns the union of all the sets in its argument list.

Figure 3 on the following page gives tests that uses these functions.

To start solving this problem, download the file SetOps.oz from Webcourses to your directory. Note that you
must keep the name as SetOps.oz. Then add your own code as indicated in the file. (This code is also included
in our testing zip file, so if you have already downloaded that, then you have it already.)

In your solution you may not modify any of the provided functions.

Hint: these are really just a bunch of problems about recursion over flat lists.

Hint: To save yourself time, you should write and test each of your functions one by one. It really will save time
to test your code yourself; just trying to run our test cases will be frustrating, because you won’t have much idea
of what went wrong (due to the way our tests are written, using Assert).

Hint: to incrementally develop the procedures, start by implementing Add. It may be helpful to “stub out” the
other functions.

After doing your own testing, then run our test cases from SetOpsTest.oz, and turn in your source code in
SetOps.oz and the output of our tests (as well as the output from any of your own tests).

9

% $Id: SetOpsTest.oz,v 1.2 2009/02/03 05:19:00 leavens Exp leavens $

\insert ’SetOps.oz’

\insert ’TestingNoStop.oz’

{StartTesting ’SetOps’}

{Assert {Equal {AsSet nil} {EmptySet}}}

{Assert {Equal {AsSet [1 2 3]} {AsSet [3 1 2]}}}

{Assert {Not {Equal {AsSet [1 2 3]} {AsSet [1 2]}}}}

{Assert {Not {Equal {AsSet [c b]} {AsSet [a b c]}}}}

{StartTesting ’Add’}

{Assert {Equal {Add {EmptySet} 1} {AsSet [1]}}}

{Assert {Equal {Add {AsSet [2 3]} 1} {AsSet [1 2 3]}}}

{Assert {Equal {Add {AsSet [2 3 1]} 1} {AsSet [2 1 3]}}}

{StartTesting ’Remove’}

{Assert {Equal {Remove {EmptySet} 7} {EmptySet}}}

{Assert {Equal {Remove {AsSet [2 3 1]} 1} {AsSet [3 2]}}}

{Assert {Equal {Remove {AsSet [2 3 1 5 7 4]} 5} {AsSet [3 2 1 7 4]}}}

{Assert {Equal {Remove {AsSet [2 3 4 8]} 1} {AsSet [2 3 4 8]}}}

{StartTesting ’Union’}

{Assert {Equal {Union {EmptySet} {AsSet [d e]}} {AsSet [d e]}}}

{Assert {Equal {Union {AsSet [a b c]} {EmptySet}} {AsSet [a b c]}}}

{Assert {Equal {Union {AsSet [a b c]} {AsSet [d e]}} {AsSet [a b c d e]}}}

{Assert {Equal {Union {AsSet [e a b c]} {AsSet [c d e a]}}

{AsSet [a b c d e]}}}

{StartTesting ’Minus’}

{Assert {Equal {Minus {EmptySet} {AsSet [d e]}} {EmptySet}}}

{Assert {Equal {Minus {AsSet [d e]} {EmptySet}} {AsSet [d e]}}}

{Assert {Equal {Minus {AsSet [a b c]} {AsSet [d e]}} {AsSet [a b c]}}}

{Assert {Equal {Minus {AsSet [e a b c]} {AsSet [c d a e]}} {AsSet [b]}}}

{Assert {Equal {Minus {AsSet [e a b c]} {AsSet [c e d a f]}} {AsSet [b]}}}

{Assert {Equal {Minus {AsSet [a b]} {AsSet [b a]}} {AsSet nil}}}

{StartTesting ’Intersect’}

{Assert {Equal {Intersect {EmptySet} {AsSet [d e]}} {EmptySet}}}

{Assert {Equal {Intersect {AsSet [a b c]} {AsSet [d e]}} {EmptySet}}}

{Assert {Equal

{Intersect {AsSet [e a b c]} {AsSet [c d a e]}} {AsSet [a e c]}}}

{Assert {Equal

{Intersect {AsSet [e a b c]} {AsSet [c e d a f b]}}

{AsSet [c b a e]}}}

{Assert {Equal {Intersect {AsSet [a b]} {AsSet [b a]}} {AsSet [a b]}}}

{StartTesting ’UnionList’}

{Assert {Equal {UnionList nil} {EmptySet}}}

{Assert {Equal

{UnionList [{AsSet [a b c]} {AsSet nil} {AsSet [d e]}]}

{AsSet [a b c d e]}}}

{Assert {Equal

{UnionList [{AsSet [a]} {AsSet [b c]} {EmptySet} {AsSet [d e]}

{AsSet [f g h i j]} {AsSet [k l m a b e]}]}

{AsSet [a b c d e f g h i j k l m]}}}

{StartTesting ’done’}

Figure 3: Tests for problem 16.

10

17. (20 points) [UseModels]

This is a problem about the window layouts discussed in section 5.2 of the “Following the Grammar” handout.

Write a function

ShrinkTo: <fun {$ <WindowLayout> <Number> <Number>}: <WindowLayout>>

such that {ShrinkTo WL Width Height} returns a window layout that is just like WL, except that each window in
WL is made to have width W and height H , where W is the minimum of the window’s current width and the
Width parameter, and H is the minimum of the window’s current height and the Height parameter.

You can assume that the input window layout has been constructed according to the grammar. That is, you don’t
have to check for errors in the input.

Figure 4 has some examples that are written using the Test procedure from the course library. Turn in your
source code in a file ShrinkTo.oz, and output of testing that includes the tests in ShrinkToTest.oz.

% $Id: ShrinkToTest.oz,v 1.1 2009/02/03 05:19:00 leavens Exp leavens $

\insert ’ShrinkTo.oz’

\insert ’TestingNoStop.oz’

{StartTesting ’ShrinkTo’}

{Test {ShrinkTo vertical(nil) 10 39} ’==’ vertical(nil)}

{Test {ShrinkTo horizontal(nil) 10 39} ’==’ horizontal(nil)}

{Test {ShrinkTo window(name: simpsons width: 30 height: 40) 10 39}

’==’ window(name: simpsons width: 10 height: 39)}

{Test {ShrinkTo window(name: simpsons width: 30 height: 11) 10 39}

’==’ window(name: simpsons width: 10 height: 11)}

{Test {ShrinkTo window(name: familyGuy width: 30 height: 11) 80 39}

’==’ window(name: familyGuy width: 30 height: 11)}

{Test {ShrinkTo window(name: familyGuy width: 30 height: 11) 80 5}

’==’ window(name: familyGuy width: 30 height: 5)}

{Test {ShrinkTo

horizontal([window(name: familyGuy width: 30 height: 15)

window(name: futurama width: 89 height: 55)])

20 30}

’==’ horizontal([window(name: familyGuy width: 20 height: 15)

window(name: futurama width: 20 height: 30)])}

{Test {ShrinkTo

vertical(

[vertical([window(name: simpsons width: 30 height: 40)])

horizontal([horizontal([window(name: news width: 5 height: 5)])])

horizontal([window(name: familyGuy width: 30 height: 15)

window(name: futurama width: 89 height: 55)])])

20 30}

’==’ vertical(

[vertical([window(name: simpsons width: 20 height: 30)])

horizontal([horizontal([window(name: news width: 5 height: 5)])])

horizontal([window(name: familyGuy width: 20 height: 15)

window(name: futurama width: 20 height: 30)])])}

{StartTesting done}

Figure 4: Tests for problem 17.

http://www.eecs.ucf.edu/~leavens/COP4020/docs/follow-grammar.pdf
http://www.eecs.ucf.edu/~leavens/COP4020/lib.zip

11

18. (30 points) [UseModels]

This is a problem about the Boolean expression grammar discussed in the “Following the Grammar” handout,
section 5.4.

Write a function

BEval : <fun {$ <Bexp> <fun {$ <Atom>}: <Value>>}: <Bool>>

that takes 2 arguments: a Bexp, E, and a function from atoms to values, F . Assume that F is defined on each
〈Atom〉 that occurs in a 〈Bexp〉. The function BEval should evaluate the expression E, using F to determine the
values of all 〈Atom〉s that occur within it. It should conjoin the values that result from the evaluation of the
subexpressions in an andExp record, it should disjoin the values of subexpressions in an orExp record, negate the
value of the subexpression in a notExp record, and use the value of the comparison contained in a comp record.
For the 〈Comp〉 records, the value of equals(A B) should be true just when {F A} == {F B}, and the value of
notequals(A B) should be true just when {F A} \= {F B}. Examples are shown in Figure 5 on the following
page.

You can assume that the input Bexp has been constructed according to the grammar. That is, you don’t have to
check for errors in the input.

Turn in your source code in a file BEval.oz, and output of testing that includes the tests in BEvalTest.oz.

19. (35 points) [UseModels]

This is a problem about the statement and expression grammar from the “Following the Grammar” handout,
section 5.5.

Write a function

AllIds : <fun {$ <Statement>} : <Set Atom>>

such that {AllIds Stmt} returns a set of all Atoms that are used in the statement as identifiers. Such uses may
occur in several places in the grammar, but the only base cases in which Atoms occur as identifiers are: the left
side of an assignment statement (e.g., id in assignStmt(id numExp(7))) and variable reference expressions
(e.g., foo in varExp(foo)).

For the sets used in the problem, you should use your solution to problem 16 on page 8. (If you don’t have a
working solution to that problem, you can get a solution from the course staff, at the cost of losing the points for
that problem.) Thus your file AllIds.oz would start as follows (after initial comments).

\insert ’SetOps.oz’

declare
fun {AllIds Stmt}

Figure 6 on page 13 gives some examples.

Hint: Be sure to use a helping function, such as AllIdsExp, so that your code follows the grammar.

After doing your own testing, run our tests and turn in the output from your tests and ours.

20. (35 points) [UseModels]

This is a problem about the statement and expression grammar from the “Following the Grammar” handout,
section 5.5.

Write a function

SubstIdentifier : <fun {$ <Statement> <Atom> <Atom>}: <Statement>>

that takes a statement Stmt and two atoms, New and Old, and returns a statement that is just like Stmt, except that
all occurrences of Old in Stmt are replaced by New. Examples are shown in Figure 7 on page 13. Use that
SubstIdentifierTest.oz file for your testing.

Hint: Be sure to use a helping function, such as SubstIdentifierExp, so that your code follows the grammar.

http://www.eecs.ucf.edu/~leavens/COP4020/docs/follow-grammar.pdf
http://www.eecs.ucf.edu/~leavens/COP4020/docs/follow-grammar.pdf
http://www.eecs.ucf.edu/~leavens/COP4020/docs/follow-grammar.pdf

12

% $Id: BEValTest.oz,v 1.1 2008/10/17 21:24:42 leavens Exp $

\insert ’BEval.oz’

\insert ’TestingNoStop.oz’

declare
fun {StdEnv A}

case A of
p then 1

[] q then 2

[] r then 4020

[] x then 76

[] y then 0

else raise stdEnvIsUndefinedOn(A) end
end

end

% All vars equal in Env2

fun {Env2 A} 1 end

{StartTesting ’BEval’}

{Assert {BEval comp(equals(q q)) StdEnv} == true}
{Assert {BEval comp(notequals(q q)) StdEnv} == false}
{Assert {BEval comp(equals(q r)) StdEnv} == false}
{Assert {BEval comp(equals(q r)) Env2} == true}
{Assert {BEval comp(notequals(p q)) StdEnv} == true}
{Assert {BEval comp(notequals(p q)) Env2} == false}
{Assert {BEval andExp(comp(notequals(p q))

comp(equals(x x))) StdEnv} == true}
{Assert {BEval andExp(comp(notequals(p q))

comp(equals(x x))) Env2} == false}
{Assert {BEval andExp(comp(notequals(p q))

comp(notequals(x x))) StdEnv} == false}
{Assert {BEval andExp(notExp(comp(equals(p p)))

comp(equals(x x))) StdEnv} == false}
{Assert {BEval notExp(andExp(notExp(comp(equals(p p)))

comp(equals(x x)))) StdEnv} == true}
{Assert {BEval orExp(notExp(andExp(notExp(comp(equals(p p)))

comp(equals(x x))))

orExp(comp(equals(p q))

comp(equals(x x)))) StdEnv} == true}
{Assert {BEval orExp(andExp(notExp(comp(equals(p p)))

comp(equals(x x)))

orExp(comp(equals(p q))

comp(equals(x y)))) StdEnv} == false}
{StartTesting done}

Figure 5: Testing for BEval, problem 18.

13

% $Id: AllIdsTest.oz,v 1.1 2008/10/18 14:29:46 leavens Exp $

\insert ’AllIds.oz’

\insert ’TestingNoStop.oz’

{StartTesting ’AllIds’}

{Assert {Equal {AllIds expStmt(varExp(q))} {AsSet [q]}}}

{Assert {Equal {AllIds expStmt(varExp(r))} {AsSet [r]}}}

{Assert {Equal {AllIds assignStmt(a varExp(b))} {AsSet [a b]}}}

{Assert {Equal {AllIds ifStmt(equalsExp(varExp(id) numExp(0))

assignStmt(id varExp(b)))}

{AsSet [id b]}}}

{Assert {Equal {AllIds expStmt(beginExp(nil varExp(a)))}

{AsSet [a]}}}

{Assert

{Equal

{AllIds

expStmt(beginExp([ifStmt(equalsExp(varExp(a) numExp(0))

assignStmt(v varExp(q)))

assignStmt(v2 varExp(w))]

beginExp([expStmt(varExp(r))] varExp(a))))}

{AsSet [a v q v2 w r]}}}

{StartTesting done}

Figure 6: Testing for AllIds, problem 19.

% $Id: SubstIdentifierTest.oz,v 1.1 2008/10/18 14:30:55 leavens Exp $

\insert ’SubstIdentifier.oz’

\insert ’TestingNoStop.oz’

{StartTesting ’SubstIdentifier’}

{Assert {SubstIdentifier expStmt(varExp(q)) p q} == expStmt(varExp(p))}

{Assert {SubstIdentifier expStmt(varExp(r)) p q} == expStmt(varExp(r))}

{Assert {SubstIdentifier assignStmt(a varExp(a)) n a}

== assignStmt(n varExp(n))}

{Assert {SubstIdentifier

ifStmt(equalsExp(varExp(id) numExp(0)) assignStmt(id varExp(b)))

var id}

== ifStmt(equalsExp(varExp(var) numExp(0)) assignStmt(var varExp(b)))}

{Assert {SubstIdentifier expStmt(beginExp(nil varExp(a))) n a}

== expStmt(beginExp(nil varExp(n)))}

{Assert {SubstIdentifier

expStmt(beginExp([ifStmt(equalsExp(varExp(a) numExp(0))

assignStmt(a varExp(b)))

assignStmt(a varExp(a))

]

beginExp(nil varExp(a))))

n a}

== expStmt(beginExp([ifStmt(equalsExp(varExp(n) numExp(0))

assignStmt(n varExp(b)))

assignStmt(n varExp(n))

]

beginExp(nil varExp(n))))}

{StartTesting done}

Figure 7: Tests for the function SubstIdentifier, which is problem 20.

14

Using Libraries and Higher-Order Functions

Material on higher-order functions is found in section 3.6 of the textbook. See also the course’s code examples page.

21. [UseModels]

In Oz, write a function

Associated: <fun {$ <List <Pair Key Value>> Key}: <List Value>

such that {Associated Pairs K} is the list, in order, of the second elements of pairs in Pairs, whose first
element is equal (by ==) to the argument K.

Do this:

(a) (5 points) by writing out the recursion yourself,

(b) (5 points) by using the for loop in Oz (see the Oz documentation or section 3.6.3 of the text [VH04]), and

(c) (5 points) using Oz’s built in list functions Map and Filter (see the code examples page and also Section
6.3 of “The Oz Base Environment” [DKS06]).

Name your 3 solutions: AssociatedPartA, AssociatedPartB, and AssociatedPartC.

Hint: for the for loop, be sure to use the form with collect:, as only that form of the for loop is an expression.

You can test by passing each of your functions as an argument to the higher-order procedure in Figure 8 on the
following page. This is in the file AssociatedTest.oz.

Figure 8 on the next page also shows how to use the procedure AssociatedTest in a way that will work if you
name each of your solutions as indicated, and put them all in a file named Associated.oz.

22. [UseModels]

This problem is due to Simon Thompson. It works with the database of a library. Consider the following types.

<Database> ::= <List <Pair <Person> <Book>>>
<Pair P B> ::= <P> #
<Person> ::= <Literal>
<Book> ::= <Literal>

A value of type <Database> records each borrowing by a person of a book.

(a) (10 points) Write a function Borrowers that takes a <Database> and a <Book> and returns a list of all
persons who have borrowed that book.

(b) (10 points) Write a function Borrowed that takes a <Database> and a <Book> and returns true just when
someone has borrowed it.

(c) (10 points) Write a function NumBorrowed that takes a <Database> and a <Person> and returns the number
of book that person has borrowed.

Figure 9 on the following page gives examples of these. These tests are in the file BorrowedTest.oz (and require
you to put all 3 functions in the file Borrowed.oz).

23. (15 points) [UseModels] [Concepts]

Write a function

Compose: <fun {$ <List <fun {$ T}: T>>}: <fun {$ T}: T>>

that takes a list of functions, and returns a function which is their composition. Figure 10 on page 16 gives some
examples. To test using these examples, use the file ComposeTest.oz.

Hint: note that {Compose nil} is the identity function.

15

% $Id: AssociatedTest.oz,v 1.1 2009/02/03 05:19:00 leavens Exp leavens $

\insert ’Associated.oz’

\insert ’TestingNoStop.oz’

declare
proc {AssociatedTest Associated}

{Test {Associated nil 3} ’==’ nil}

{Test {Associated [(3#4) (5#7) (3#6) (9#3)] 3} ’==’ [4 6]}

{Test {Associated [(1#a) (3#c) (2#b) (4#d)] 2} ’==’ [b]}

{Test {Associated [(1#a) (3#c) (2#b) (4#d)] 0} ’==’ nil}

end

{StartTesting ’Part (a)’}

{AssociatedTest AssociatedPartA}

{StartTesting ’Part (b)’}

{AssociatedTest AssociatedPartB}

{StartTesting ’Part (c)’}

{AssociatedTest AssociatedPartC}

{StartTesting done}

Figure 8: Test procedure for Problem 21 and its use.

% $Id: BorrowedTest.oz,v 1.1 2009/02/03 05:19:00 leavens Exp leavens $

\insert ’Borrowed.oz’

\insert ’TestingNoStop.oz’

declare
ExampleBase = [(’Alice’ # ’Tintin’) (’Anna’ # ’Little Women’)

(’Alice’ # ’Asterix’) (’Rory’ # ’Tintin’)]

{StartTesting ’Borrowers, part (a)’}

{Test {Borrowers ExampleBase ’Tintin’} ’==’ [’Alice’ ’Rory’]}

{Test {Borrowers ExampleBase ’Little Women’} ’==’ [’Anna’]}

{Test {Borrowers ExampleBase ’Asterix’} ’==’ [’Alice’]}

{Test {Borrowers ExampleBase ’The Wizard of Oz’} ’==’ nil}

{StartTesting ’Borrowed, part (b)’}

{Test {Borrowed ExampleBase ’Tintin’} ’==’ true}
{Test {Borrowed ExampleBase ’Little Women’} ’==’ true}
{Test {Borrowed ExampleBase ’Asterix’} ’==’ true}
{Test {Borrowed ExampleBase ’The Wizard of Oz’} ’==’ false}

{StartTesting ’NumBorrowed, part (c)’}

{Test {NumBorrowed ExampleBase ’Alice’} ’==’ 2}

{Test {NumBorrowed ExampleBase ’Anna’} ’==’ 1}

{Test {NumBorrowed ExampleBase ’Rory’} ’==’ 1}

{Test {NumBorrowed ExampleBase ’Ben’} ’==’ 0}

{StartTesting done}

Figure 9: Examples for problem 22.

16

% $Id: ComposeTest.oz,v 1.2 2009/02/03 05:19:00 leavens Exp leavens $

\insert ’Compose.oz’

\insert ’TestingNoStop.oz’

{StartTesting ’Compose’}

{Test {{Compose nil} [1 2 3]} ’==’ [1 2 3]}

local
fun {Tail Ls} _|Rest = Ls in Rest end

in
{Test {{Compose [Tail]} [1 2 3 4 5]}

’==’ [2 3 4 5]}

{Test {{Compose [Tail Tail Tail]} [1 2 3 4 5]}

’==’ [4 5]}

{Test {{Compose [fun {$ H|_} H end Tail Tail Tail]} [a b c d e f]}

’==’ d}

end
{Test {{Compose [fun {$ X} X + 1 end fun {$ X} X + 2 end]} 4}

’==’ 7}

{Test {{Compose [fun {$ X} {Append X [5 6]} end
fun {$ X} {Append X [2]} end]} [4]}

’==’ [4 2 5 6]}

{Test {{Compose [fun {$ X} 3|X end fun {$ Y} 4|Y end]} nil}

’==’ 3|(4|nil)}

{StartTesting done}

Figure 10: Examples for problem 23.

17

24. [UseModels] [Concepts]

Consider the following type as a representation of binary relations.

<BinaryRel A B> ::= <List <Pair A B>>
<Pair A B> ::= <A> #

(a) (10 points) Using the built-in function All (see Section 6.3 of “The Oz Base Environment” [DKS06]), write
a function

IsFunction: <fun {$ <BinaryRel A B>}: Bool>

that returns true just when its argument satisfies the standard definition of a function; that is,
{IsFunction R} is true just when for each pair x#y in the list R there is no pair x#z in R such that y 6= z.
The following examples are in the file IsFunctionTest.oz.

% $Id: IsFunctionTest.oz,v 1.1 2009/02/03 05:19:00 leavens Exp leavens $

\insert ’IsFunction.oz’

\insert ’TestingNoStop.oz’

{StartTesting ’IsFunction’}

{Test {IsFunction nil} ’==’ true}
{Test {IsFunction [a#1 b#2 c#3 a#1]} ’==’ true}
{Test {IsFunction [d#4 a#1 b#2 c#3 a#1]} ’==’ true}
{Test {IsFunction [b#2 c#3 a#1]} ’==’ true}
{Test {IsFunction [b#2 c#3 b#41 a#1]} ’==’ false}
{Test {IsFunction [d#4 b#2 c#3 b#41 a#1]} ’==’ false}
{Test {IsFunction [b#2 c#3 d#2 e#2 f#2 g#3 a#1]} ’==’ true}
{Test {IsFunction [bush#shrub]} ’==’ true}
{Test {IsFunction [tree#arb bush#shrub]} ’==’ true}
{Test {IsFunction [tree#arb bush#hmmm bush#shrub]} ’==’ false}
{Test {IsFunction [plant#grow tree#arb bush#hmmm bush#shrub]} ’==’ false}
{StartTesting done}

(b) (10 points) Using the for loop in Oz (see the Oz documentation or section 3.6.3 of the text [VH04]), write
a function

BRelCompose: <fun {$ <BinaryRel A B> <BinaryRel B C>}:
<BinaryRel A C>>

that returns the relational composition of its arguments. That is, a pair x#z is in the result if and only if
there is a pair x#y in the first relation argument of the pair of arguments, and a pair y#z is in the second
argument. The following examples are in the file BRelComposeTest.oz.

% $Id: BRelComposeTest.oz,v 1.1 2009/02/03 05:19:00 leavens Exp leavens $

\insert ’BRelCompose.oz’

\insert ’TestingNoStop.oz’

{StartTesting ’BRelCompose’}

{Test {BRelCompose nil [2#b 3#c]} ’==’ nil}

{Test {BRelCompose nil nil} ’==’ nil}

{Test {BRelCompose [1#2 2#3] [2#b 3#c]}

’==’ [1#b 2#c]}

{Test {BRelCompose [1#2 1#3] [2#b 3#c]}

’==’ [1#b 1#c]}

{Test {BRelCompose [1#3 2#3] [3#b 3#c]}

’==’ [1#b 1#c 2#b 2#c]}

{StartTesting done}

18

25. (5 points) [UseModels] [Concepts]

Define a function

CommaSeparate: <fun {$ <List String>}: String>

that takes a list of strings and returns a single string that contains the given strings in the order given, separated
by ", ". Test the examples below by using the file CommaSeparateTest.oz, which inserts the actual examples
from the file and CommaSeparateBodyTest.oz.

% $Id: CommaSeparateTest.oz,v 1.1 2009/02/03 05:19:00 leavens Exp leavens $

\insert ’CommaSeparate.oz’

\insert ’TestingNoStop.oz’

\insert ’CommaSeparateBodyTest.oz’

% $Id: CommaSeparateBodyTest.oz,v 1.1 2009/02/03 05:19:00 leavens Exp leavens $

{StartTesting ’CommaSeparate’}

{Test {CommaSeparate nil} ’==’ ""}

{Test {CommaSeparate ["a" "b"]} ’==’ "a, b"}

{Test {CommaSeparate ["Monday" "Tuesday" "Wednesday" "Thursday"]}

’==’ "Monday, Tuesday, Wednesday, Thursday"}

{StartTesting done}

26. (5 points) [UseModels] [Concepts]

Define a function

OnSeparateLines: <fun {$ <List String>}: String>

that takes a list of strings and returns a single string that, when printed, shows the strings on separate lines.

Test the examples below by feeding the file OnSeparateLinesTest.oz which inserts the actual examples from
the file OnSeparateLinesBodyTest.oz.

% $Id: OnSeparateLinesTest.oz,v 1.1 2009/02/03 05:19:00 leavens Exp leavens $

\insert ’OnSeparateLines.oz’

\insert ’TestingNoStop.oz’

\insert ’OnSeparateLinesBodyTest.oz’

% $Id: OnSeparateLinesBodyTest.oz,v 1.1 2009/02/03 05:19:00 leavens Exp leavens $

{StartTesting ’OnSeparateLines’}

{Test {OnSeparateLines nil} ’==’ ""}

{Test {OnSeparateLines ["a" "b"]} ’==’ "a\nb"}

{Test {OnSeparateLines ["Monday" "Tuesday" "Wednesday" "Thursday"]}

’==’ "Monday\nTuesday\nWednesday\nThursday"}

{StartTesting done}

27. (20 points) [UseModels] [Concepts]

Define a curried function

SeparatedBy: <fun {$ <String>}: <fun {$ <List String>}: String>>

that is a generalization of onSeparateLines and commaSeparated. Put your code in a file SeparatedBy.oz.

Then write a testing file SeparatedByTesting.oz that shows how to use your definition of the function
SeparatedBy to define both functions CommaSeparate and OnSeparateLines. Your testing file should continue to
runs the tests in both CommaSeparateBodyTest.oz and OnSeparateLinesBodyTest.oz, to test these definitions.

28. (5 points) [UseModels]

Define the function MyAppend to be just like the standard Append function. However, your definition is to be
written using FoldR, completing the following by adding arguments to the call of FoldR. (For a description of
FoldR, see Section 6.3 of “The Oz Base Environment” [DKS06].)

19

fun {MyAppend Xs Ys}
{FoldR _________________________ }

end

Put your solution in a file MyAppend.oz and test it using the file MyAppendTest.oz that we provide.

29. (5 points) [UseModels]

Using FoldR in a way similar to the previous problem, define

DoubleAll: <fun {$ <List Number>}: <List Number>>

that takes a list of Numbers, and returns a list with each of its elements doubled. Testing the following examples
can be done by running the file DoubleAllTest.oz, which inserts the file DoubleAllBodyTest.oz, which has the
actual examples.

% $Id: DoubleAllTest.oz,v 1.1 2009/02/03 05:19:00 leavens Exp leavens $

\insert ’DoubleAll.oz’

\insert ’TestingNoStop.oz’

\insert ’DoubleAllBodyTest.oz’

% $Id: DoubleAllBodyTest.oz,v 1.1 2009/02/03 05:19:00 leavens Exp leavens $

{StartTesting ’DoubleAll’}

{Test {DoubleAll nil} ’==’ nil}

{Test {DoubleAll [1 2 3]} ’==’ [2 4 6]}

{Test {DoubleAll [3 6 2 5 4 1]} ’==’ [6 12 4 10 8 2]}

{StartTesting done}

30. (15 points) [UseModels]

Define the function MyMap to be just like the standard Map function. Your definition is to be done by using FoldR.

Then you will have to write a testing file, MyMapTesting.oz, and hand that in to demonstrate that you know how
to use MyMap. As part of your testing, use MyMap to (a) declare DoubleAll and test your definition (by inserting
the file DoubleAllBodyTest.oz that we provide) and (b) to add 1 to all the elements of a list of Ints.

Turn in both your code in a file MyMap.oz the testing code in MyMapTesting.oz, and the test output.

31. [UseModels]

Consider the following type

<Tree T> ::= node(item:T subtrees:<List <Tree T>>)

for nary-trees, which represents a Tree of elements of some type T as a node record, which contains a field item
of type T and a list of subtrees.

(a) (10 points) Define a function

SumTree: <fun {$ <Tree Int>}: Int>

that adds together all the Ints in a Tree of Ints.
You can test your definition of SumTree using the code given in SumTreeTest.oz (see Figure 11 on
page 21), which uses the examples from the file SumTreeBodyTest (also in the figure). The latter gives some
examples.

(b) (15 points) Define a function

MapTree: <fun {$ <Tree S> <fun {$ S}: T>}: <Tree T>>

that takes a Tree t and a function f and returns a tree that has the same shape of t, but where each item x is
replaced by the result of applying f to x.
You can test your definition of MapTree using the code given in MapTreeTest.oz (see Figure 12 on
page 22), which uses the examples from the file MapTreeBodyTest (also in the figure). The latter gives some
examples.

20

(c) (30 points) By generalizing your answers to the above problems, define an Oz function FoldTree that is
analogous to FoldR for lists. This should take a tree, a function to replace the node constructor, a function to
replace the | constructor for lists, and a value to replace the empty list.
The following testing code, in FoldTreeTest.oz, tests that your definition can define SumTree, and MapTree
on Trees.

% $Id: FoldTreeTest.oz,v 1.1 2009/02/03 05:19:00 leavens Exp leavens $

\insert ’TestingNoStop.oz’

\insert ’FoldTree.oz’

declare
fun {Add X Y} X + Y end
fun {SumTree Tree} {FoldTree Tree Add Add 0} end
fun {MapTree Tree F}

{FoldTree Tree

fun {$ I Strs} node(item:{F I} subtrees:Strs) end
fun {$ E Es} E|Es end
nil}

end
\insert ’SumTreeBodyTest.oz’

\insert ’MapTreeBodyTest.oz’

21

% $Id: SumTreeTest.oz,v 1.1 2009/02/03 05:19:00 leavens Exp leavens $

\insert ’SumTree.oz’

\insert ’TestingNoStop.oz’

\insert ’SumTreeBodyTest.oz’

% $Id: SumTreeBodyTest.oz,v 1.1 2009/02/03 05:19:00 leavens Exp leavens $

{StartTesting ’SumTree’}

{Test {SumTree node(item:4 subtrees:nil)} ’==’ 4}

{Test {SumTree

node(item:3

subtrees:[node(item:4 subtrees:nil)

node(item:7 subtrees:nil)])} ’==’ 14}

{Test {SumTree

node(item:10

subtrees:[node(item:3

subtrees:[node(item:4 subtrees:nil)

node(item:7 subtrees:nil)])

node(item:10

subtrees:[node(item:20 subtrees: nil)

node(item:30 subtrees: nil)

node(item:40 subtrees: nil)]

)])}

’==’ 124}

{StartTesting done}

Figure 11: Testing for problem a.

22

% $Id: MapTreeTest.oz,v 1.1 2009/02/03 05:19:00 leavens Exp leavens $

\insert ’MapTree.oz’

\insert ’TestingNoStop.oz’

\insert ’MapTreeBodyTest.oz’

% $Id: MapTreeBodyTest.oz,v 1.1 2009/02/03 05:19:00 leavens Exp leavens $

{StartTesting ’MapTree’}

local
fun {Add1 X} X+1 end
fun {Add3 X} X+3 end

in
{Test {MapTree node(item:4 subtrees:nil) Add1}

’==’ node(item:5 subtrees:nil)}

{Test {MapTree node(item:3

subtrees:[node(item:4 subtrees:nil)

node(item:7 subtrees:nil)])

Add3}

’==’ node(item:6

subtrees:[node(item:7 subtrees:nil)

node(item:10 subtrees:nil)])}

{Test {MapTree

node(item:10

subtrees:[node(item:3

subtrees:[node(item:4 subtrees:nil)

node(item:7 subtrees:nil)])

node(item:10

subtrees:[node(item:20 subtrees: nil)

node(item:30 subtrees: nil)

node(item:40 subtrees: nil)]

)])

Add3}

’==’ node(item:13

subtrees:[node(item:6

subtrees:[node(item:7 subtrees:nil)

node(item:10 subtrees:nil)])

node(item:13

subtrees:[node(item:23 subtrees: nil)

node(item:33 subtrees: nil)

node(item:43 subtrees: nil)]

)])}

end
{StartTesting done}

Figure 12: Testing for problem b.

23

32. (30 points) [UseModels] [Concepts]

A potentially infinite set (or PISet) can be described by a “characteristic function” (i.e., a function whose range is
the Booleans) that determines if an element occurs in the set. For example, the function P such that

P (x) = x is an number and x > 7

is the characteristic function for a potentially infinite set containing all numbers strictly greater than 7. Allowing
the user to construct such a potentially infinite set from a characteristic function gives them the power to
construct potentially infinite sets like {x | P (x)} that contains an infinite number of elements (in this example,
the set contains all numbers strictly greater than 7).

Your problem is to implement the following operations for the type PISet of potentially infinite sets. (Hint: think
about using a function type as the representation of PISets.)

1. The function PISetSuchThat takes a characteristic function, F and returns a potentially infinite set such
that each value X is in the PISet returned just when {F X} is true.

2. The function PISetUnion takes two PISets, with characteristic functions F and G, and returns a PISet such
that each value X is in the resulting PISet just when either {F X} or {G X} is true.

3. The function PISetIntersect takes two PISets, with characteristic functions F and G, and returns a PISet
such that each value X is in the resulting PISet just when both {F X} and {G X} are true.

4. The function PISetMember returns a Boolean that tells whether the second argument is a member of its
PISet that is its first argument.

5. The function PISetComplement returns a PISet that contains everything that is not in its argument PISet.

Note (hint, hint) that the equations in Figure 13 must hold, for all functions F and G, and elements X of
appropriate types.

{PISetMember {PISetUnion (PISetSuchThat F} {PISetSuchThat G}} X}
== {F X} orelse {G X}

{PISetMember {PISetIntersect (PISetSuchThat F} {PISetSuchThat G}} X}
== {F X} andthen {G X}

{PISetMember {PISetSuchThat F} X} == {F X}
{PISetMember {PISetComplement {PISetSuchThat F}} X} == {Not {F X}}

Figure 13: Equations that give hints for problem 32.

As examples, consider the tests in Figure 14 on the next page.

24

% $Id: PISetTest.oz,v 1.2 2009/02/03 05:19:00 leavens Exp leavens $

\insert ’PISet.oz’

\insert ’TestingNoStop.oz’

{StartTesting ’PISet’}

declare
fun {IsCoke X} X == coke end
fun {IsPepsi X} X == pepsi end
fun {GTMaker Y} fun {$ X} {IsNumber X} andthen X > Y end end
GT5 = {GTMaker 5}

GT7 = {GTMaker 7}

{Test {PISetMember {PISetSuchThat IsCoke} coke} ’==’ true}
{Test {PISetMember {PISetSuchThat IsCoke} pepsi} ’==’ false}
{Test {PISetMember {PISetComplement {PISetSuchThat IsCoke}} coke} ’==’ false}
{Test {PISetMember {PISetUnion {PISetSuchThat IsCoke} {PISetSuchThat IsPepsi}}

pepsi} ’==’ true}
{Test {PISetMember {PISetUnion {PISetSuchThat IsCoke} {PISetSuchThat IsPepsi}}

coke} ’==’ true}
{Test {PISetMember {PISetUnion {PISetSuchThat IsCoke} {PISetSuchThat IsPepsi}}

sprite} ’==’ false}
{Test {PISetMember

{PISetIntersect {PISetSuchThat IsCoke} {PISetSuchThat IsPepsi}}

coke} ’==’ false}
{Test {PISetMember {PISetSuchThat GT5} coke} ’==’ false}
{Test {PISetMember {PISetSuchThat GT7} coke} ’==’ false}
{Test {PISetMember {PISetSuchThat GT7} 8} ’==’ true}
{Test {PISetMember {PISetSuchThat GT7} 7} ’==’ false}
{Test {PISetMember {PISetSuchThat GT7} 6} ’==’ false}
{Test {PISetMember {PISetSuchThat GT7} 999092384084184} ’==’ true}
{Test {PISetMember {PISetSuchThat GT5} 999092384084184} ’==’ true}
{Test {PISetMember {PISetSuchThat GT5} 7} ’==’ true}
{Test {PISetMember {PISetSuchThat GT5} 6} ’==’ true}
{Test {PISetMember {PISetSuchThat GT5} 5} ’==’ false}
{Test {PISetMember {PISetUnion {PISetSuchThat GT5} {PISetSuchThat GT7}} 6}

’==’ true}
{Test {PISetMember {PISetIntersect {PISetSuchThat GT5} {PISetSuchThat GT7}} 6}

’==’ false}
{Test {PISetMember {PISetComplement {PISetSuchThat GT5}} coke} ’==’ true}
{Test {PISetMember {PISetComplement {PISetSuchThat GT7}} coke} ’==’ true}
{Test {PISetMember {PISetComplement {PISetSuchThat GT7}} 8} ’==’ false}
{Test {PISetMember {PISetComplement {PISetSuchThat GT7}} 7} ’==’ true}
{Test {PISetMember {PISetComplement {PISetSuchThat GT7}} 6} ’==’ true}
{Test {PISetMember {PISetComplement {PISetSuchThat GT7}} 999092384084184}

’==’ false}
{Test {PISetMember {PISetComplement {PISetSuchThat GT5}} 999092384084184}

’==’ false}
{Test {PISetMember {PISetComplement {PISetSuchThat GT5}} 7} ’==’ false}
{Test {PISetMember {PISetComplement {PISetSuchThat GT5}} 6} ’==’ false}
{Test {PISetMember {PISetComplement {PISetSuchThat GT5}} 5} ’==’ true}
{Test {PISetMember {PISetComplement {PISetSuchThat GT5}} ~5} ’==’ true}
{StartTesting done}

Figure 14: Example tests for problem 32.

25

33. (25 points) [UseModels]

Consider the following data grammars.

<Exp> ::= boolLit(<Bool>)
| intLit(<Int>)
| charLit(<Char>)
| subExp(<Exp> <Exp>)
| equalExp(<Exp> <Exp>)
| ifExp(<Exp> <Exp> <Exp>)

<OType> ::= obool | oint | ochar | owrong

In this grammar, boolLit, intLit, and charLit represent Boolean, Integer, and Character literals (respectively).
As the grammar says, you can assume that inside boolLit is a <Bool>, and inside an intLit is an <Int>, and
similarly for charLit. Records of the form subExp(E1 E2) represent subtractions (E1 − E2). Records of the
form equalExp(E1 E2) represent equality tests, i.e., E1 == E2. Records of the form ifExp(E1 E2 E3) represent
if-then-else expressions, i.e., if E1 then E2 else E3 end.

Your task is to write a function

TypeOf: <fun {$ <Exp>}: OType>

that takes an <Exp> and returns its OType. The file TypeOfTest.oz (see Figure 15 on the following page) gives
some examples and should be used for testing.

Your function should incorporate a reasonable notion of what the exact type rules are, but your rules should agree
with our test cases in Figure 15 on the next page. (Exactly what “reasonable” is left up to you; explain any
decisions you feel the need to make. However, note that this is static type checking, you will not be executing the
programs and should not look at the values of subexpressions when deciding on types.)

Points
This homework’s total points: 491. Total extra credit points: 0.

References
[DKS06] Denys Duchier, Leif Kornstaedt, and Christian Schulte. The Oz Base Environment. mozart-oz.org, June

2006. Version 1.3.2.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, Mass., 1995.

[VH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming. The MIT
Press, Cambridge, Mass., 2004.

26

% $Id: TypeOfTest.oz,v 1.1 2009/02/03 05:19:00 leavens Exp leavens $

\insert ’TypeOf.oz’

\insert ’TestingNoStop.oz’

{StartTesting ’TypeOf’}

{Test {TypeOf equalExp(intLit(3) intLit(4))} ’==’ obool}

{Test {TypeOf subExp(intLit(3) intLit(4))} ’==’ oint}

{Test {TypeOf subExp(intLit(3) intLit(4))} ’==’ oint}

{Test {TypeOf subExp(charLit(&a) intLit(4))} ’==’ owrong}

{Test {TypeOf subExp(intLit(4) charLit(&a))} ’==’ owrong}

{Test {TypeOf equalExp(subExp(charLit(&a) intLit(3))

intLit(4))} ’==’ owrong}

{Test {TypeOf equalExp(ifExp(subExp(charLit(&a) intLit(&b))

boolLit(false)
intLit(4))

ifExp(boolLit(true) intLit(3) intLit(4)))}

’==’ owrong}

{Test {TypeOf ifExp(boolLit(true) intLit(4) intLit(5))} ’==’ oint}

{Test {TypeOf ifExp(boolLit(true) intLit(4) boolLit(true))} ’==’ owrong}

{Test {TypeOf ifExp(intLit(3) intLit(4) intLit(5))} ’==’ owrong}

{Test {TypeOf equalExp(subExp(charLit(&a) intLit(3))

ifExp(intLit(0) intLit(4) boolLit(true)))}
’==’ owrong}

{Test {TypeOf equalExp(subExp(charLit(&a) charLit(&b))

ifExp(boolLit(false)
ifExp(boolLit(true)

intLit(4)

boolLit(false))
boolLit(true)))}

’==’ owrong}

{Test {TypeOf equalExp(equalExp(subExp(intLit(7) intLit(6))

subExp(intLit(5) intLit(4)))

ifExp(equalExp(intLit(3) intLit(3))

ifExp(boolLit(true)
boolLit(true)
boolLit(false))

equalExp(charLit(&y) charLit(&y))))}

’==’ obool}

{StartTesting done}

Figure 15: Examples for problem 33.

