
COP 4020 — Programming Languages 1 October 20, 2007

Homework 3a: Review Problems for Exam 2
You don’t have to do these problems, and if you do, you don’t have to turn them in. However, you can

get extra credit points for doing them if you turn them in on WebCT them by Monday, October 22 at 10am.
The two problems in this review are meant to explore the two problems dropped from the first exam

in a way that also brings out the main issues in chapter 3. They thus cover the objectives [Concepts] and
[UseModels].

Note that these problems are rather more involved than what you would see on a test. Feel free to do just
part of the grammar in each problem.

Don’t use side effects (assignment and cells) in your solutions.
For all programing tasks, you must run your code using the Mozart/Oz system. For these you must also

provide evidence that your program is correct (for example, test cases). Turn in (on WebCT) your code and
the output of your testing for all questions that require code.

Be sure to clearly label what problem each area of code solves with a comment.
Don’t hesitate to contact the staff if you are stuck at some point.
For review of the material, read sections 2.4.3, 2.3.1, 2.6, and chapter 3 of the textbook [RH04]. Also

read our handout “Following the Grammar.”

Grammar for the Problems
Consider the grammar in Figure 1 on the following page, which describe data structures (records called
abstract syntax trees). These are to be thought of as representing in Oz data the statements and expressions
of Oz itself. Thus the grammar in the figure represents the abstract syntax of a sugared version of Oz. For
example the following Oz statement:

A = B

is represented by the record structure:

assignStmt("A" varIdExp("B"))

Note that the grammar uses Oz strings to represent variable identifiers. A more complex example that illus-
trates more features of the representation is given in Figure 2 on page 3.

1

http://www.eecs.ucf.edu/~leavens/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/about.shtml#OutUseModels
http://www.eecs.ucf.edu/~leavens/COP4020/docs/follow-grammar.pdf

〈Statement〉 ::= skipStmt
| seqStmt(〈List 〈Statement〉〉)
| localStmt(〈String〉 〈Statement〉)
| assignStmt(〈String〉 〈Expression〉)
| ifStmt(〈Expression〉 〈Statement〉 〈Statement〉)
| caseStmt(〈Expression〉 〈Pattern〉 〈Statement〉 〈Statement〉)
| applyStmt(〈Expression〉 〈List 〈Expression〉〉)
| namedFunStmt(〈String〉 〈List 〈Pattern〉〉 〈Expression〉)
| inStmt(〈Pattern〉 〈Expression〉 〈Statement〉)

〈Expression〉 ::= varIdExp(〈String〉)
| atomExp(〈Atom〉)
| numExp(〈Number〉)
| recordExp(〈Expression〉 〈List 〈Field〉〉)
| procExp(〈List 〈Pattern〉〉 〈Statement〉)
| ifExp(〈Expression〉 〈Expression〉 〈Expression〉)
| caseExp(〈Expression〉 〈Pattern〉 〈Expression〉 〈Expression〉)
| applyExp(〈Expression〉 〈List 〈Expression〉〉)

〈Pattern〉 ::= varIdPat(〈String〉)
| atomPat(〈Atom〉)
| recordPat(〈Atom〉 〈List 〈Field〉〉)

〈Field〉 ::= colonFld(〈Atom〉 〈Expression〉)
| posFld(〈Exp〉)

Figure 1: Grammar for a simplified subset of the practical version of the declarative language of chapter 3,
based on the textbook’s section 2.6 [RH04]. The type 〈String〉 is the type of character strings in Oz, 〈Atom〉
is the type of atoms in Oz, etc.

2

The following Oz expression:

fun {AddToEach A#B Ls}
case Ls of

(X#Y)|T then ({Plus A X}#{Plus B Y})|{AddToEach A#B T}
else nil
end

end

is represented by the following record structure:

namedFunStmt("AddToEach"
[recordPat(’#’

[posFld(varIdExp("A")) posFld(varIdExp("B"))])
varIdPat("Ls")]

caseExp(varIdExp("Ls")
recordPat(’|’

[posFld(recordExp(atomExp(’#’)
[posFld(varIdExp("X"))
posFld(varIdExp("Y"))]))

posFld(varIdExp("T"))])
recordExp(atomExp(’|’)

[posFld(recordExp(atomExp(’#’)
[posFld(applyExp(varIdExp("Plus")

[varIdExp("A")
varIdExp("X")]))

posFld(applyExp(varIdExp("Plus")
[varIdExp("B")
varIdExp("Y")]))]))

posFld(applyExp(varIdExp("AddToEach")
[recordExp(atomExp(’#’)

[posFld(varIdExp("A"))
posFld(varIdExp("B"))])

varIdExp("T")]))])
atomExp(nil)))

Figure 2: Example showing how Oz is parsed into the record structures (abstract syntax trees) from Figure 1
on the previous page.

3

Problems
1. (90 points; extra credit) [Concepts] [UseModels]

Write a function

FreeVarIds: <fun {$ <Statement>}: <Set <String>>

that takes a 〈Statement〉 in the grammar of Figure 1 on page 2 and returns a set of all the variable
identifiers that occur free in its argument. You are responsible for writing tests and deciding what the
correct outputs for the tests are that match the definition of “free variable identifier.” Be sure to include
tests that exercise all of the grammar.

You should use your code for SetOps from homework 3 to deal with sets (see our solution on WebCT
if you don’t have one that works).

Hint: the result of calling FreeVarIds on the record structure in the bottom of Figure 2 on the
previous page is a set of strings equivalent to {AsSet ["AddToEach""Plus"]}.

2. (90 points; extra credit) [Concepts] [UseModels]

Write a function

BoundVarIds: <fun {$ <Statement>}: <Set <String>>

that takes a 〈Statement〉 in the grammar of Figure 1 on page 2 and returns a set of all the variable
identifiers that occur bound in its argument. You are responsible for writing tests and deciding what
the correct outputs for the tests are that match the definition of “bound variable identifier.” Be sure to
include tests that exercise all of the grammar.

Hint: the result of calling BoundVarIds on the record structure in the bottom of Figure 2 on the
previous page is a set of strings equivalent to {AsSet ["A""B""Ls""X""Y""T"]}. The variable
identifiers X Y and T are declared in the case pattern, and used in that case clause.

Hint: use FreeVarIds and its helping functions (of which you have several, right?) as helping
functions.

3. (90 points; extra credit) [Concepts] [UseModels]

Write a function

Desugar: <fun {$ <Statement>}: <Statement>

that takes a 〈Statement〉 in the grammar of Figure 1 on page 2 and returns a 〈Statement〉 in the subset
of that grammar that represents Oz statements in the kernel language of the textbook [RH04, Section
2.3]. You are responsible for writing tests and deciding what the correct outputs for the tests are that
properly desugar the input. Be sure to include tests that exercise all of the grammar.

References
[RH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming. The

MIT Press, Cambridge, Mass., 2004.

4

