COP 4020 — Programming Languages 1 August 20, 2009

Free and Bound Variable Identifiers, Desugaring, in
Oz

A Grammar for Oz with Sugars

Consider the grammar in Figure [I] which describe data structures (records called abstract syntax trees).
These are to be thought of as representing in Oz data the statements and expressions of Oz itself. Thus the
grammar in the figure represents the abstract syntax of a sugared version of Oz. For example the following
Oz statement:

A =B
is represented by the record structure:
assignStmt ("A" varIdExp ("B"))

Note that the grammar uses Oz strings to represent variable identifiers. A more complex example that illus-
trates more features of the representation is given in Figure[2]on the next page.

(Statement) ::= skipStmt
| segstmt ((List (Statement)))
| localstmt ((String) (Statement))
| assignStmt ((String) (Expression))
| ifstmt ((Expression) (Statement) (Statement))
| casestmt ((Expression) (Pattern) (Statement) (Statement))
| applystmt ((Expression) (List (Expression)))
| namedFunStmt ((String) (List (Pattern)) (Expression))
| inStmt ((Pattern) (Expression) (Statement))

(Expression) ::= varIdExp ((String))
| atomExp ((Atom)) | boolExp ((Bool))
| numExp ((Number))
| recordExp ({Expression) (List (Field)))
| procExp ((List (Pattern)) (Statement))
| ifExp ((Expression) (Expression) (Expression))
| caseExp ((Expression) (Pattern) (Expression) (Expression))
| applyExp ((Expression) (List (Expression)))

(Pattern) ::= varIdPat ((String))
| atomPat ({(Atom)) | boolPat ((Bool))
| recordpat ((Atom) (List (Field)))

(Field) ::= colonF1d ((Atom) (Expression))
| posF1d ({Exp))

Figure 1: Grammar for a simplified subset of the practical version of the declarative language of chapter 3,
based on the textbook’s section 2.6 [VHO4]. The type (String) is the type of character strings in Oz, (Atom)
is the type of atoms in Oz, etc.

The following Oz statement:

fun {AddToEach A#B Ls}
case Ls of
(X#Y) |T then ({Plus A X}#{Plus B Y}) | {AddToEach A#B T}
else nil
end
end

is represented by the following record structure:

namedFunStmt ("AddToEach™"
[recordPat (' #”’
[posFld (varIdExp ("A")) posFld(varIdExp("B"))1)
varIdPat ("Ls")]
caseExp (varIdExp ("Ls")
recordPat (' |’
[posFld (recordExp (atomExp (" #')
[posFld (varIdExp ("X"))
posFld (varIdExp ("Y")) 1))
posFld (varIdExp ("T")) 1)
recordExp (atomExp (" |7)
[posFld (recordExp (atomExp (" #')
[posFld (applyExp (varIdExp ("Plus")
[varIdExp ("A")
varIdExp ("X") 1))
posFld (applyExp (varIdExp ("Plus")
[varIdExp ("B")
varIdExp ("Y") 1)) 1))
posFld (applyExp (varIdExp ("AddToEach")
[recordExp (atomExp (" #')
[posFld (varIdExp ("A"))
posFld (varIdExp ("B")) 1)
varIdExp ("T") 1)) 1)
atomExp (nil)))

Figure 2: Example showing how Oz is parsed into the record structures (abstract syntax trees) from Figure|[T]
on the previous page.

The Functions (or Problems to be Solved)

1. The function
FreeVarIds: <fun {$ <Statement>}: <Set <String>>
takes a (Statement) in the grammar of Figure E] on pageand returns a set of all the variable identifiers

that occur free in its argument. Its implementation is in FreeVarIds.oz. There are tests in the file
FreeVarIdsTest.oz.

See the file TestOutput . txt for results of testing.
2. The function
BoundVarIds: <fun {$ <Statement>}: <Set <String>>
takes a (Statement) in the grammar of Figure|l{on pageand returns a set of all the variable identifiers

that occur bound in its argument. Its implementation is in BoundVarIds.oz. There are tests in the
file BoundvarIdsTest.oz.

See the file TestOutput . txt for results of testing.

3. The function

Desugar: <fun {$ <Statement>}: <Statement>

takes a (Statement) in the grammar of Figure[I]on page[l]and returns a (Statement) in the subset of that
grammar that represents Oz statements in the kernel language of the textbook [VH04, Section 2.3].
An implementation is in Desugar . oz. There are tests in the file DesugarTest .oz.

See the file TestOutput . txt for results of testing.

References

[VHO4] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming. The
MIT Press, Cambridge, Mass., 2004.

