
Following the Grammar
Gary T. Leavens

CS-TR-07-10b
September 2007, revised October 2007, November 2007

Keywords: Recursion, programming recursive procedures, recursion pattern, inductive definition, BNF
grammar, Kleene star, follow the grammar, functional programming, list recursion, programming languages,
concrete syntax, abstract syntax, helping procedures, parsing procedures, Oz.

2001 CR Categories: D.1.1 [Programming Techniques] Applicative (Functional) Programming — de-
sign, theory; D.2.4 [Software Engineering] Coding Tools and Techniques — design, theory; D.3.1 [Program-
ming Languages] Formal Definitions and Theory — syntax; D.3.3 [Programming Languages] Language
Constructs and Features — recursion;

icc iBY: This document is distributed under the terms of the Creative Commons Attribution License, version
2.0, see http://creativecommons.org/licenses/by/2.0/.

School of Electrical Engineering and Computer Science
University of Central Florida
4000 Central Florida Blvd.

Orlando, FL 32816-2362 USA

Following the Grammar

Gary T. Leavens
210 Harris Center (Bldg. 116)

School of Electrical Engineering and Computer Science, University of Central Florida
4000 Central Florida Blvd., Orlando, FL 32816-2362 USA

leavens@eecs.ucf.edu

October 21, 2007

Abstract

This document explains what it means to “follow the grammar” when writing recursive programs, for
several kinds of different grammars. It is intended to be used in classes that teach functional programming
using Oz, especially those used for teaching principles of programming languages. In such courses traversal
over an abstract syntax tree defined by a grammar are fundamental, since they are the technique used to
write compilers and interpreters.

1 Introduction
An important skill in functional programming is being able to write a program whose structure mimics the
structure of a context-free grammar. This is important for working with programming languages [4, 8], as
they are described by such grammars. Therefore, the proficient programmer’s motto is “follow the grammar.”
This document attempts to explain what “following the grammar” means, by explaining a series of graduated
examples.

The “follow the grammar” idea was the key insight that allowed computer scientists to build compilers for
complex languages, such as Algol 60. It is fundamental to modern syntax-directed compilation [1]. Indeed
the idea of syntax-directed compilation is another expression of the idea “follow the grammar.” It finds
clear expression in the structure of interpreters used in the Friedman, Wand and Haynes book Essentials of
Programming Languages [4].

The idea of following the grammar is not new and not restricted to programming language work. An
early expression of the idea is Michael Jackson’s method [6], which advocated designing a computation
around the structure of the data in a program. Object-oriented design [2, 9] essentially embodies this idea, as
in object-oriented design the program is organized around the data.

Thus the “follow the grammar” idea has both a long history and wide applicability.

1.1 Grammar Background
To explain the concept of following a grammar precisely, we need a bit of background on grammars.

A context-free grammar consists of several nonterminals (names for sets), each of which is defined by
one or more alternative productions. In a context-free grammar, each production may contain recursive uses
of nonterminals. For example, the context-free grammar below has four non-terminals, 〈stmt〉, 〈var〉, exp,
and 〈s-list〉.

〈stmt〉 ::= skip | assign(〈var〉 〈exp〉) | compound(〈s-list〉)
〈s-list〉 ::= nil | 〈stmt〉 ‘|’ 〈s-list〉

The nonterminal 〈stmt〉 has three alternatives (separated by the vertical bars). The production for 〈stmt〉 has
a recursive call to 〈s-list〉, which, in turn, recursively calls 〈stmt〉.

1

1.2 Definition of Following the Grammar
Following the grammar means making a set of functions whose structure mimics that of the grammar in a
certain way. This is explained in the following definition.

Definition 1.1 Consider a context-free grammar, G and a set of functions Prog. We say that Prog follows
the grammar G if:

1. For every nonterminal, 〈X〉, in G, there is a function, FX, in Prog that takes an argument from the set
described by the nonterminal 〈X〉.

2. If a nonterminal 〈X〉 has alternatives, then the corresponding function FX decides between the alter-
natives offered in 〈X〉’s grammatical productions, and there is (at least) one case in the body of FX for
each alternative production for 〈X〉.

3. If the nonterminal 〈X〉 has an alternative whose production contains a nonterminal 〈Y〉 that is defined
in the grammar G, then:

(a) the corresponding case in the function FX has a call to function FY, where FY is the function in
Prog that handles data described by the nonterminal 〈Y〉, and

(b) each call from FX to FY passes to FY a part of the data FX received as an argument, namely that
part described by 〈Y〉.

Since this definition does not prescribe the details of the set of functions, we often say that Prog has an
outline that follows a grammar G if Prog follows G.

We give many examples in the sections that follow.
Following the grammar thus organizes the program around the structure of the data, in much the same

way as one would organize the methods of an object-oriented program in classes, so that each method deals
with data of the class in which it resides. In a functional program, each kind of data (i.e., each nonterminal)
has its own function that only handles that kind of data. This division of responsibility makes it easy to
understand and modify the program.

A closer object-oriented analogy is to the structure of the methods in the Visitor pattern [5], for a particular
visitor. The story there is the same: each kind of data has a method (the visitor) that handles that particular
kind of data.

1.3 Overview
In the following we’ll consider several different examples of grammars and functions that follow them. Our
exploration is gradual, and based on increasing complexity in the structures of the grammars we treat. In
Section 2, we show how to follow a grammar that only has alternatives. In Section 3, we do the same for
grammars that only have recursion. In Section 4 we add the complication of multiple nonterminals. Finally,
in Section 5 we treat a series of grammars that combine these features.

2 Only Alternatives, No Recursion
The simplest kind of grammar has no recursion, but just has alternatives.

2.1 Temperature Grammar
For example, consider the following grammar for temperatures. In this grammar, all of the alternatives are
base cases.

〈Temperature〉 ::=
hot

| warm
| cold

2

2.1.1 Example

A function that takes a Temperature as an argument will have the outline typified by the following example.

declare
fun {SelectOuterwear Temp}

case Temp of
hot then none

[] warm then windBreaker
else downJacket
end

end

Notice that there are three alternatives in the grammar, and so there are three cases in the function, each of
which corresponds to a condition tested in the body of the function. There is no recursion in the Temperature
grammar, so there is no recursion in the function.

2.1.2 IsFreezing Exercise

Which of the following has a correct outline for a function

IsFreezing: <fun {$ <Temperature>}: <Bool>>

that follows the grammar for Temperature?

1. declare
fun {IsFreezing Temp}

case Temp of
nil then false

[] cold|_ then true
[] _|T then {IsFreezing T}

end

2. declare
fun {IsFreezing Temp}

case Temp of
nil then false

else H|T then H == cold orelse {IsFreezing T}
end

3. declare
fun {IsFreezing Temp}

case Temp of
cold then true

[] hot then false
else false

end

4. declare
fun {IsFreezing Temp}

case Temp of
cold then {IsFreezing Temp}

[] hot then {Not {IsFreezing Temp}}
else false

end

Answer:3.

3

2.2 Color Grammar Exercises
Consider another example with simple alternatives and no recursion:

〈Color〉 ::= red | yellow | green | blue

Write the function:

EqualColor : <fun {$ <Color> <Color>} : <Bool>>

that takes two colors and returns true if they are the same, and false otherwise.

3 Only Recursion, No Alternatives
Another kind of grammar is one that just has recursion, but no alternatives.

3.1 Infinite Sequence Grammar
The following is an example of such a grammar.

〈ISeq〉 ::=
iseq(〈Number〉 〈ISeq〉)

In Oz one can create such infinite sequences using unbound variables, as in the following example.

declare Ones
Ones = iseq(1 Ones)

3.1.1 Example

A lazy function

ISeqMap : <ISeq> <fun {$ <fun {$ <Number>} : <Number>>} : <ISeq>>

that follows the above grammar is the following example.

declare
fun lazy {ISeqMap Seq F}

case Seq of
iseq(N Tail) then iseq({F N} {ISeqMap Tail F})

end
end

% some tests
Ones = iseq(1 Ones)
fun {Add2 X} X+2 end
Threes = {ISeqMap Ones Add2}
{Browse Threes.2.1}

Following the grammar in this example means that the function does something with the number N of
the ISeq and recurses on its Tail, just like the grammar describes instances as having a number and a tail,
which is a ISeq where it recurses. In this example, there is no base case or stopping condition, because the
grammar has no alternatives to allow one to stop, which is why the function is lazy. In the tests, the Browse
shows the numeral 3.

Although this example does not have a stopping condition, other functions that work on this grammar
might allow stopping when some condition holds, as in the next example.

4

3.1.2 AnyNegative Exercise

Which of the following has a correct outline for a function

AnyNegative : <fun {$ <ISeq>}: Bool>

that follows the grammar for ISeq?

1. declare
fun {AnyNegative Seq}

case Seq of
nil then false

[] N|Tail then N < 0 orelse {AnyNegative Tail}
end

end

2. declare
fun {AnyNegative Seq}

case Seq of
iseq(N Tail) then N < 0 orelse {AnyNegative Tail}

end
end

3. declare
fun {AnyNegative Seq}

N < 0 orelse {AnyNegative Tail}
end

4. declare
fun {AnyNegative Seq}

case Seq of
cold then true

else false
end

end

Answer:2.

3.1.3 Filter Infinite Sequence Exercise

Write a lazy function

FilterISeq : <fun {$ <fun {$ <Number>}: <Bool>> ISeq}: ISeq>

that takes a predicate, Pred, an infinite sequence, Seq, and returns an infinite sequence of all elements in
Seq for which Pred returns true when applied to the element, in their original order. For example,

{FilterISeq fun {$ N} N mod 2 == 0 end Integers}

would return an ISeq that is just like Integers but without its odd elements.

4 Multiple Nonterminals
When the grammar has multiple nonterminals, there should be a function for each nonterminal in the gram-
mar, and the recursive calls between these functions should correspond to the recursive uses of nonterminals
in the grammar. That is, when a production for a nonterminal, 〈X〉, uses another nonterminal, 〈Y〉, there
should be a call from the function for 〈X〉 to the function for 〈Y〉 that passes an instance of 〈Y〉 as an argu-
ment.

5

4.1 Rectangle Grammar
Consider the following example grammar, for rectangles.

〈Rectangle〉 ::= rectangle(ul: 〈Point〉 lr: 〈Point〉)
〈Point〉 ::= point(x: 〈Number〉 y: 〈Number〉)

4.1.1 Example

To follow this grammar when writing a program like

MoveUp : <fun {$ <Rectangle> <Number>} : <Rectangle>>

one would structure the code into two functions, one for each of the two nonterminals, as shown in Figure 1.
Since the production for 〈Rectangle〉 uses the nonterminal 〈Point〉 twice, the function MoveUp calls the
MoveUpPoint function twice, once on each of the points in the Rectangle. Note that the arguments to these
functions are parts of the number described by the corresponding nonterminals, and are extracted from the
number by the pattern match in the body of MoveUp

declare
fun {MoveUp Rect Delta}

case Rect of
rectangle(ul: UL lr: LR) then rectangle(ul: {MoveUpPoint UL Delta}

lr: {MoveUpPoint LR Delta})
end

end

fun {MoveUpPoint Pt Delta}
case Pt of

point(x: X y: Y) then point(x: X y: Y+Delta)
end

end

Figure 1: The two functions that move Rectangles up.

4.1.2 DoubleRect Exercise

Which of the following is a correct outline of a function

DoubleRect : <fun {$ <Rectangle>}: <Rectangle>>

that follows the grammar for Rectangles.

1. declare
fun {DoubleRect Rect}

case Rect of
rectangle(ul: point(x:ULX y: ULY)

lr: point(x:LRX y: LRY)
then rectangle(ul: point(x: ULX+ULX y: ULY+ULY)

lr: point(x: LRX+LRX y: LRY+LRY)
end

end

6

2. declare
fun {DoubleRect Rect}

case Rect of
rectangle(ul: UL lr: LR) then rectangle(ul: {DoubleRect UL}

lr: {DoubleRect LR})
[] point(x: X y: Y) then point(x: X+X y: Y+Y)
end

end

3. declare
fun {DoubleRect Rect}

case Rect of
UL|LR|nil then {DoublePoint UL}|{DoublePoint LR}|nil

end
end
fun {DoublePoint Pt}

case Pt of
X|Y|nil then (X+X)|(Y+Y)|nil

end
end

4. declare
fun {DoubleRect Rect}

case Rect of
rectangle(ul: UL lr: LR) then rectangle(ul: {DoublePoint UL}

lr: {DoublePoint LR})
end

end
fun {DoublePoint Pt}

case Pt of
point(x: X y: Y) then point(x: X+X y: Y+Y)

end
end

Answer:4.

4.1.3 ShrinkRect Exercise

Write a function,

ShrinkRect : <fun {$ <Rectangle> <Number>} : <Rectangle>>

that takes a Rectangle, Rect, and a number Factor (which is greater than or equal to 1) and shrinks the
rectangle’s sides by Factor, leaving its upper left point in place.

4.2 Multiple Nonterminal Exercise
Suppose you have a grammar with 10 nonterminals, how many functions would be contained in an outline
that followed that grammar?

5 Combination of Different Grammar Types
Most interesting examples of grammars involve a combination of the three types discussed above. That is,
there are alternatives, and recursions, and multiple nonterminals.

7

The discussion in this section starts with some examples that only involve two of these features. The
grammar for flat lists and the grammar for “window layouts” both involve only one nonterminal. The gram-
mar for boolean expressions that follows has multiple nonterminals, but does not have mutual recursion.

Following these simpler combination examples is a discussion of an example of a “statement and expres-
sion” grammar that involves all three features at once.

5.1 Flat Lists
The grammar for flat lists is simpler than other combinations, as it has alternatives and recursion, but only
one nonterminal. A grammar for flat lists of elements of type T is as follows.

〈List T〉 ::= 〈T〉 ‘|’ 〈List T〉
| nil

where 〈T〉 is the nonterminal that generates elements of type T .
This grammar means we are not interested in the structure of the 〈T〉 elements of the lists; that is the sense

in which the list is “flat.”
(For flat lists, “following the grammar” is essentially equivalent to following the first and fourth com-

mandments in Friedman and Felleisen’s book The Little Schemer [3].)

5.1.1 Example of Recursion over Flat Lists

The Map function in Figure 2, whose type is shown below,

Map : <fun {$ <fun {$ <T>} : <S>> <List T>}: <List S>>

is a paradigmatic example of following the grammar for flat lists.

declare
fun {Map Lst F}

case Lst of
T|Ts then {F T}|{Map Ts F}

else nil
end

end

Figure 2: The Map function for flat lists.

5.1.2 ExtractNames Exercise

Which, if any, of the following is a correct outline for a function

ExtractNames : <fun {$ <List <Person>>} : <List String>>

that follows the grammar for flat lists? List all that have a correct outline for recursion over flat lists. (Note:
we are mainly asking whether these have the right outline, but having the wrong outline will cause them not
to work as they should.) Assume that the function GetName is defined elsewhere.

1. declare
fun {ExtractNames Lst}

case Lst of
Person|Persons then {GetName Person}|Persons

else nil
end

end

8

2. declare
fun {ExtractNames Lst}

case Lst of
Person|Persons then {GetName Person}|{ExtractNames Persons}

else nil
end

end

3. declare
fun {ExtractNames Lst}

if Lst == nil
then nil
else {GetName Lst.1}|{ExtractNames Lst.2}
end

end

4. declare
fun {ExtractNames Lst}

if Lst == nil
then nil
else {GetName Lst.1}|Lst.2
end

end

5. declare
fun {ExtractNames Lst}

case Lst of
Person|Persons then {GetName Person}|{ExtractNames Persons}

end
end

6. declare
fun {ExtractNames Lst}

{Map Lst GetName}
end

Answer:2,3,6.

5.1.3 DeleteListing Exercise

Which, if any, of the following is a correct outline for a function

DeleteListing : <fun {$ <List <String> <Person>>} : <List Person>>

that follows the grammar for flat lists? List all that have a correct outline for recursion over flat lists.
(As previously, assume that the function GetName is defined elsewhere.)

9

1. declare
fun {DeleteListing Name Lst}

case Lst of
Person|Persons then if Name == {GetName Person}

then {DeleteListing Name Persons}
else Person|{DeleteListing Name Persons}
end

else nil
end

end

2. declare
fun {DeleteListing Name Lst}

case Lst of
Person|Persons andthen Name == {GetName Person}

then {DeleteListing Name Persons}
[] Person|Persons then Person|{DeleteListing Name Persons}
else nil
end

end

3. declare
fun {DeleteListing Name Lst}

if Lst == nil
then nil
elseif Name == {GetName Lst.1}
then {DeleteListing Name Lst.2}
else Lst.1|{DeleteListing Name Lst.2}
end

end

4. declare
fun {DeleteListing Name Lst}

case Lst of
Person|Persons then {Append

if Name == {GetName Person}
then nil else [Person]
end
{DeleteListing Name Persons}

}
else nil
end

end

5. declare
fun {DeleteListing Name Lst}

case Lst of
Person|Persons andthen Name == {GetName Person}

then {DeleteListing Name Persons}
else Person|{DeleteListing Name Persons}
end

end

10

6. declare
fun {DeleteListing Name Lst}

case Lst of
Person|Persons if Name == {GetName Person}

then {DeleteListing Name Persons}
else Person|{DeleteListing Name Persons}
end

end
end

Answer:1,2,3,4.

5.2 Window Layouts
For purposes of this paper, a “window layout” is an instance of the grammar below. The grammar is designed
to describe an (imagined) data structure for placing windows on a computer screen, similar in some ways to
layout managers in various graphical user interface libraries.

The window layout grammar has only one nonterminal, but more alternatives than the grammar for flat
lists. Thus functions that follow its grammar have more recursive calls than functions that follow the grammar
for flat lists.

〈WindowLayout〉 ::=
window(name: 〈Atom〉 width: 〈Number〉 height: 〈Number〉)

| horizontal(〈List WindowLayout〉)
| vertical(〈List WindowLayout〉)

In the above grammar, the nonterminals 〈Number〉 and 〈Atom〉 have the same syntax as in Oz.

5.2.1 Example

An example function that follows the above grammar is shown in Figure 3. This example is coded using
Oz’s built-in Map function (which was also shown in Figure 2 on page 8). Doing that avoids having to write
out a separate function for recursing over a list of WindowLayouts. Writing out a separate function (or two
different functions, in general) to recurse over the two lists in the grammar would be perfectly fine, however.
These helping function(s) would, of course, follow the grammar for flat lists.

declare
fun {DoubleSize WL}

case WL of
window(name: N width: W height: H)
then window(name: N width: 2*W height: 2*H)

[] horizontal(WLs) then horizontal({Map WLs DoubleSize})
[] vertical(WLs) then vertical({Map WLs DoubleSize})
end

end

Figure 3: The function DoubleSize, which follows the grammar for window layouts.

Note, however, that it would not be following the grammar to write something like BadDoubleSize
shown in Figure 4 on the next page. The problem with BadDoubleSize is that the function works on
both lists and window layouts. Writing code like this leads to confusion, especially as grammars get more
complicated. Sometimes the function also plays a different role depending on what nonterminal it serves, and
so the same argument, if it occurs as part of two different nonterminals can make it very difficult to write the

11

function correctly. While these are not problems in this simple example, they will cause difficulties in larger
and more complex examples.

declare
fun {BadDoubleSize WL}

case WL of
window(name: N width: W height: H)
then window(name: N width: 2*W height: 2*H)

[] horizontal(WLs) then horizontal({BadDoubleSize WLs})
[] vertical(WLs) then vertical({BadDoubleSize WLs})
%% The following case clauses should not be in this function!
[] nil then nil
[] Head|Tail then {BadDoubleSize Head}|{BadDoubleSize Tail}
end

end

Figure 4: The function BadDoubleSize, which does not follow the grammar for window layouts, because
it incorrectly combines two recursions in one function.

In the calls to Map in Figure 3, the function argument is DoubleSize itself. This is equivalent to (but
slightly more efficient than) passing the function fun {$ WL} {DoubleSize WL} end. However, in
other problems using such an anonymous function (or a named helping function) may be needed, because
the function argument to Map must be a function that takes exactly one argument. For an example, consider
writing a function AddToSize, such that {AddToSize N WL} returns a window layout that is exactly
like WL, except that each window has N added to both its width and height. In solving such a problem it is
convenient to use a function that takes a window layout, WL and returns the value of {AddToSize N WL}
for the fixed N. This is shown in Figure 5.

declare
fun {AddToSize N WL}

fun {AddWithFixedN WL} {AddToSize N WL} end
in

case WL of
window(name: Name width: W height: H)
then window(name: Name width: W+N height: H+N)

[] horizontal(WLs) then horizontal({Map WLs AddWithFixedN})
[] vertical(WLs) then vertical({Map WLs AddWithFixedN})
end

end

Figure 5: The function AddToSize that illustrates the use of a helper function when calling Map.

12

5.2.2 MultSize Exercise

Which, if any, of the following is a correct outline for a function

MultSize : <fun {$ <WindowLayout> <Number>} : <WindowLayout>>

that follows the grammar for window layouts? List all that have a correct outline for recursion over window
layouts.

1. declare
fun {MultSize WL N}

case WL of
window(name: N width: W height: H) then
window(name: N width: N*W height: N*H)

[] horizontal(WLs) then
horizontal({Map WLs fun {$ WL} {MultSize WL N} end})

[] vertical(WLs) then
vertical({Map WLs fun {$ WL} {MultSize WL N} end})

end
end

2. declare
fun {MultSize WL N}

case WL of
window(name: N width: W height: H) then
window(name: N width: N*W height: N*H)

[] horizontal(WLs) then
horizontal({MultSize WLs N})

[] vertical(WLs) then
vertical({MultSize WLs N})

[] nil then nil
[] Head|Tail then {MultSize Head N}|{MultSize Tail N}
end

end

3. declare
fun {MultSize WL N}

case WL of
window(name: N width: W height: H) then
window(name: N width: N*W height: N*H)

[] horizontal(WLs) then
horizontal({MultSizeList WLs N})

[] vertical(WLs) then
vertical({MultSizeList WLs N})

end
end
fun {MultSizeList WLs N}

case WL of
nil then nil

[] Head|Tail then {MultSize Head N}|{MultSizeList Tail N}
end

end

13

4. declare
fun {MultSize WL N}

fun {MultSizeList WLs}
case WL of

nil then nil
[] Head|Tail then {MultSize Head N}|{MultSizeList Tail}
end

end
in

case WL of
window(name: N width: W height: H) then
window(name: N width: N*W height: N*H)

[] horizontal(WLs) then
horizontal({MultSizeList WLs})

[] vertical(WLs) then
vertical({MultSizeList WLs})

end
end

5. declare
fun {MultSize WL N}

fun {MS WL}
case WL of

window(name: N width: W height: H) then
window(name: N width: N*W height: N*H)

[] horizontal(WLs) then
horizontal({Map WLs MS})

[] vertical(WLs) then
vertical({Map WLs MS})

end
end

in
{MS WL}

end

6. declare
fun {MultSize WL N}

case WL of
window(name: N width: W height: H) then
window(name: N width: N*W height: N*H)

[] horizontal(WLs) then
horizontal({MultSize WLs N})

[] vertical(WLs) then
vertical({MultSize WLs N})

[] nil then nil
[] Head|nil then {MultSize Head N}|nil
[] Head|Tail then {MultSize Head N}|{MultSize Tail N}
end

end

Answer:1,3,4,5.It’simportanttonotethattheothersdonotfollowthegrammar.Theproblemisthattheycombinetworecursionsinonefunction,whichleadstoconfusion.

14

5.2.3 TotalWidth Exercise

Write a function,

TotalWidth : <fun {$ <WindowLayout>}: <Number>>

that takes a WindowLayout, WL, and returns the total width of the layout. The width is defined by cases. The
width of a WindowLayout of the form

window(name: M width: N1 height: N2)

is N1. The width of a 〈WindowLayout〉 of the form

horizontal([W1 . . . Wm])

is the sum of the widths of W1 through Wm (inclusive). The width of a 〈WindowLayout〉 of the form

vertical([W1 . . . Wm])

is the maximum of the widths of W1 through Wm (inclusive). If the list is empty, the width should be taken
as 0.

Several example tests that show how TotalWidthworks are shown in Figure 6. (These use the Assert
procedure from the course library.)

\insert ’Assert.oz’
{Assert {TotalWidth window(name: olympics width: 50 height: 33)} == 50}
{Assert {TotalWidth horizontal(nil)} == 0}
{Assert {TotalWidth vertical(nil)} == 0}
{Assert {TotalWidth

horizontal([window(name: olympics width: 80 height: 33)
window(name: localNews width: 20 height: 10)])}

== 100}
{Assert {TotalWidth

vertical([window(name: olympics width: 80 height: 33)
window(name: localNews width: 20 height: 10)])}

== 80}
{Assert {TotalWidth

vertical([window(name: starTrek width: 40 height: 100)
window(name: olympics width: 80 height: 33)
window(name: localNews width: 20 height: 10)])}

== 80}
{Assert {TotalWidth

horizontal(
[vertical([window(name: tempest width: 200 height: 100)

window(name: othello width: 200 height: 77)
window(name: hamlet width: 1000 height: 600)])

horizontal([window(name:baseball width: 50 height: 40)
window(name: track width: 100 height: 60)
window(name: equestrian width: 70 height: 30)])

vertical([window(name: starTrek width: 40 height: 100)
window(name: olympics width: 80 height: 33)
window(name: localNews width: 20 height: 10)])

])}
== 1300}

Figure 6: Tests for the TotalWidth exercise.

Feel free to use Oz’s Map and Max functions (as well as FoldL or FoldR if you have seen those).

15

5.2.4 Design Your own WindowLayout Problem Exercise

Design another problem over WindowLayouts. Give an English explanation, the function’s type, and some
examples. Then solve your problem, first on paper, then on the computer.

For example, you might do something like computing the total area of the window layout, or a list of all
the names of the windows.

5.3 Sales Data
The grammar for Sales Data is shown in Figure 7. It has a single nonterminal and like the window layouts
grammar, also uses lists. The grammar for 〈String〉 is the same as for Oz, which is essentially 〈List 〈Char〉〉.

〈SalesData〉 ::=
store(address: 〈String〉 amounts: 〈List 〈Int〉〉)

| group(name: 〈String〉 members: 〈List 〈SalesData〉〉)

Figure 7: Grammar for the type 〈SalesData〉.

5.3.1 NormalizeSalesData Example

The grammar for sales data is interesting in that its fields contain several different kinds of lists. Since the
different lists play different roles in the sales data grammar, it is thus especially important to follow the
grammar in the sense that only data of type SalesData should be passed to functions that work on that
type, and no lists should be passed to such functions.

The reason this is important is illustrated by the following example. Suppose we want to write a function

NormalizeSalesData : <fun {$ <SalesData>}: <SalesData>>

that takes a sales data argument, SD, and returns a result that is just like SD, except that in each store record,
each address string is put into ALL CAPITAL LETTERS and the amounts list is trimmed to be just the first
5 elements of the argument’s list, and in each group record, the name field is put into all capital letters, and
each of the members is also normalized.

Figure 8 on the next page gives some examples of how this program is supposed to work. These use the
Test procedure from the course library.

We suggest that you try to write out a solution for this problem before looking at our solution.

16

{Test {NormalizeSalesData
store(address: "1005 Alafaya Trail Rd."

amounts: [101 102 103 104 105 106 107])}
’==’ store(address: "1005 ALAFAYA TRAIL RD."

amounts: [101 102 103 104 105])}
{Test {NormalizeSalesData

store(address: "227 International Dr."
amounts: [1 2 3 4 5 6 7 8 9 10 11 1])}

’==’ store(address: "227 INTERNATIONAL DR." amounts: [1 2 3 4 5])}
{Test {NormalizeSalesData

group(name: "Target"
members: [store(address: "227 International Dr."

amounts: [1 2 3 4 5 6 7 8 9 10 11 1])
store(address: "1005 Alafaya Trail Rd."

amounts: [101 102 103 104 105 106 107])])}
’==’ group(name: "TARGET"

members: [store(address: "227 INTERNATIONAL DR."
amounts: [1 2 3 4 5])

store(address: "1005 ALAFAYA TRAIL RD."
amounts: [101 102 103 104 105])])}

{Test {NormalizeSalesData
group(name: "Target"

members:
[group(name: "Target Florida"

members: [store(address: "227 International Dr."
amounts: [1 2 3 4 5 6 7 8 9 10 11 1])

store(address: "1005 Alafaya Trail Rd."
amounts: [101 102 103 104 105 106 107])])

group(name: "Target Iowa"
members: [store(address: "1024 Binary Ave."

amounts: [1 2 4 8])
store(address: "256 Logical Blvd."

amounts: [7 25 15 44 36 8 3 7])])
group(name: "Target New York"

members: [group(name: "Target NYC"
members: [store(address: "Fifth Ave."

amounts: [8 2 1 3 3 5])])
store(address: "Albany" amounts: nil)])])}

’==’ group(name: "TARGET"
members:

[group(name: "TARGET FLORIDA"
members: [store(address: "227 INTERNATIONAL DR."

amounts: [1 2 3 4 5])
store(address: "1005 ALAFAYA TRAIL RD."

amounts: [101 102 103 104 105])])
group(name: "TARGET IOWA"

members: [store(address: "1024 BINARY AVE."
amounts: [1 2 4 8])

store(address: "256 LOGICAL BLVD."
amounts: [7 25 15 44 36])])

group(name: "TARGET NEW YORK"
members: [group(name: "TARGET NYC"

members: [store(address: "FIFTH AVE."
amounts: [8 2 1 3 3])])

store(address: "ALBANY" amounts: nil)])])}

Figure 8: Testing for the function NormalizeSalesData.

17

Our code for NormalizeSalesData is shown in Figure 9. This follows the grammar in that it only
passes sales data to the function NormalizeSalesData. Note that lists of characters and numbers are
handled by helper functions Capitals, Map, and the built-in List.take. Can you see why this code
works correctly?

declare
fun {NormalizeSalesData SD}

case SD of
store(address: Addr amounts: Amts) then
store(address: {Capitals Addr} amounts: {List.take Amts 5})

[] group(name: Name members: Membs) then
group(name: {Capitals Name} members: {Map Membs NormalizeSalesData})

end
end

% Return the argument in all capital letters
fun {Capitals Str} {Map Str Char.toUpper} end

Figure 9: The function NormalizeSalesData, which follows the Sales Data grammar.

Now consider the NormalizeSalesDataBad, shown in Figure 10, which attempts to solve the same
problem. This does not follow the grammar, but resembles programs that some students try to write because
they don’t want to use helper functions. Although it still correctly uses List.take, all other lists are
handled by making all recursive calls to itself. These recursive calls do not follow the grammar, because
they pass lists to a function that is supposed to receive sales data records. Does the code in Figure 10 work
correctly?

declare
fun {NormalizeSalesDataBad SD}

case SD of
store(address: Addr amounts: Amts) then
store(address: {NormalizeSalesDataBad Addr} amounts: {List.take Amts 5})

[] group(name: Name members: Membs) then
group(name: {NormalizeSalesDataBad Name}

members: {NormalizeSalesDataBad Membs})
%% The following cases shouldn’t be in this function!
[] nil then nil
[] Store1|OtherStores then

{NormalizeSalesDataBad Store1}|{NormalizeSalesDataBad OtherStores}
[] Char1|Rest then {Char.toUpper Char1}|{NormalizeSalesDataBad Rest}
end

end

Figure 10: The function NormalizeSalesDataBad, which does not follow the Sales Data grammar.

Indeed the code in Figure 10 is not correct! Can you see why? First, remember that in Oz Strings are lists
of characters. The last two case clauses are attempting to deal with lists of characters separately from lists
of sales data records. Can you see how the pattern matching is confused in the last two case clauses? Which
one will execute? What will happen when it does? Is the problem solved by reordering the last 2 cases? Why
not?

18

5.4 Boolean Expressions
The grammar for Boolean expressions is shown in Figure 11. It has multiple nonterminals, but does not have
mutual recursion among the nonterminals. The grammar for 〈Atom〉 is the same as for Oz. These Atoms
represent variable identifiers in boolean expressions.

〈Bexp〉 ::=
andExp(〈Bexp〉 〈Bexp〉)

| orExp(〈Bexp〉 〈Bexp〉)
| notExp(〈Bexp〉)
| comp(〈Comp〉)

〈Comp〉 ::= equals(〈Atom〉 〈Atom〉)
| notequals(〈Atom〉 〈Atom〉)

Figure 11: Grammar for Boolean expressions.

5.4.1 Example

An example using this grammar is shown in Figure 12.

declare
fun {NegateBexp BE}

case BE of
andExp(L R) then orExp({NegateBexp L} {NegateBexp R})

[] orExp(L R) then andExp({NegateBexp L} {NegateBexp R})
[] notExp(E) then E
[] comp(C) then comp({NegateComp C})
end

end

fun {NegateComp C}
case C of

equals(A B) then notequals(A B)
[] notequals(A B) then equals(A B)
end

end

Figure 12: The function NegateBexp, which follows the Boolean expression grammar.

19

5.4.2 Beval Exercise

Write a function

BEval : <fun {$ <Bexp> <fun {$ <Atom>}: <Bool>>}: <Bool>>

that takes 2 arguments: a Bexp, E, and a function from atoms to Booleans, F . Assume that F is defined
on each atom that occurs in a 〈Varref〉. This function evaluates the expression E, using F to determine the
values of all 〈Varref〉s that occur within it. Examples are shown in Figure 13.

\insert ’Assert.oz’
declare
fun {StdEnv A} % This function is just for ease of testing

case A of
p then 1

[] q then 2
[] r then 4020
[] x then 76
[] y then 0
else raise stdEnvIsUndefinedOn(A) end
end

end

{Assert {BEval comp(equals(q q)) StdEnv} == true}
{Assert {BEval comp(notequals(q q)) StdEnv} == false}
{Assert {BEval comp(equals(q r)) StdEnv} == false}
{Assert {BEval comp(notequals(p q)) StdEnv} == true}
{Assert {BEval andExp(comp(notequals(p q))

comp(equals(x x))) StdEnv} == true}
{Assert {BEval andExp(comp(notequals(p q))

comp(notequals(x x))) StdEnv} == false}
{Assert {BEval andExp(notExp(comp(equals(p p)))

comp(equals(x x))) StdEnv} == false}
{Assert {BEval notExp(andExp(notExp(comp(equals(p p)))

comp(equals(x x)))) StdEnv} == true}
{Assert {BEval orExp(notExp(andExp(notExp(comp(equals(p p)))

comp(equals(x x))))
orExp(comp(equals(p q))

comp(equals(x x)))) StdEnv} == true}
{Assert {BEval orExp(andExp(notExp(comp(equals(p p)))

comp(equals(x x)))
orExp(comp(equals(p q))

comp(equals(x y)))) StdEnv} == false}

Figure 13: Testing for BEval.

20

5.5 Statements and Expressions
The grammar for statements and expressions below involves mutual recursion. Statements can contain ex-
pressions and expressions can contain statements. This mutual recursion allows for arbitrary nesting. In the
following grammar the nonterminal 〈Atom〉, which stands for variable identifiers, has the same syntax as in
Oz.

〈Statement〉 ::=
expStmt(〈Expression〉)

| assignStmt(〈Atom〉 〈Expression〉)
| ifStmt(〈Expression〉 〈Statement〉)

〈expression〉 ::=
varExp(〈Atom〉)

| numExp(〈Number〉)
| equalsExp(〈Expression〉 〈Expression〉)
| beginExp(〈List Statement〉 〈Expression〉)

5.5.1 Examples

An example that follows this grammar is shown in Figure 14. It’s instructive to draw arrows from each use
of StmtAdd1 and ExpAdd1, in the figure, to where these names are defined, and to draw arrows from the
uses of the corresponding nonterminals in the grammar to where they are defined. That helps show how the
recursion patterns match.

declare
fun {StmtAdd1 Stmt}

case Stmt of
expStmt(E) then expStmt({ExpAdd1 E})

[] assignStmt(I E) then assignStmt(I {ExpAdd1 E})
[] ifStmt(E S) then ifStmt({ExpAdd1 E} {StmtAdd1 S})
end

end

fun {ExpAdd1 Exp}
case Exp of

varExp(I) then varExp(I)
[] numExp(N) then numExp(N+1)
[] equalsExp(E1 E2) then equalsExp({ExpAdd1 E1} {ExpAdd1 E2})
[] beginExp(Stmts E) then beginExp({Map Stmts StmtAdd1} {ExpAdd1 E})
end

end

Figure 14: The functions StmtAdd1 and ExpAdd1. These mutually-recursive functions work on the state-
ment and expression grammar.

Note that, in Figure 14 the recursive call from ExpAdd1 to StmtAdd1 occurs in the case for beginExp,
following the grammar. However, this recursive call is actually made inside Map, since the recursion in the
grammar is inside a list. It would be fine to use a separate helping function for this list recursion, and that will
be necessary in cases that Map cannot handle. Another thing to note about this example is that the varExp
case of ExpAdd1 could be simplified to return Exp instead of returning varExp(I). The form used in
Figure 14 is more complex and slower, but shows the general pattern more clearly.

21

5.5.2 Subst-Identifier Exercise

Write a function

SubstIdentifier : <fun {$ <Statement> <Atom> <Atom>}: <Statement>>

that takes a statement Stmt and two atoms, New and Old, and returns a statement that is just like Stmt,
except that all occurrences of Old in Stmt are replaced by New. Examples are shown in Figure 15.

\insert ’Assert.oz’
{Assert {SubstIdentifier expStmt(varExp(q)) p q} == expStmt(varExp(p))}
{Assert {SubstIdentifier expStmt(varExp(r)) p q} == expStmt(varExp(r))}
{Assert {SubstIdentifier assignStmt(a varExp(a)) n a}

== assignStmt(n varExp(n))}
{Assert {SubstIdentifier

ifStmt(equalsExp(varExp(id) numExp(0)) assignStmt(id varExp(b)))
var id}

== ifStmt(equalsExp(varExp(var) numExp(0)) assignStmt(var varExp(b)))}
{Assert {SubstIdentifier expStmt(beginExp(nil varExp(a))) n a}

== expStmt(beginExp(nil varExp(n)))}
{Assert {SubstIdentifier

expStmt(beginExp([ifStmt(equalsExp(varExp(a) numExp(0))
assignStmt(a varExp(b)))

assignStmt(a varExp(a))
]
beginExp(nil varExp(a))))

n a}
== expStmt(beginExp([ifStmt(equalsExp(varExp(n) numExp(0))

assignStmt(n varExp(b)))
assignStmt(n varExp(n))

]
beginExp(nil varExp(n))))}

Figure 15: Tests for the function SubstIdentifier.

5.5.3 More Statement and Expression Exercises

Invent one or more other problem on the statement and expression grammar above. For example, try reversing
the list of statements in every beginExp whose expression contains a 〈numExp〉 with a number less than 3.
For a more challenging exercise, write an evaluator for this grammar.

Acknowledgments
Thanks to Brian Patterson and Daniel Patanroi for comments on drafts of a Scheme version of this paper [7].
Earlier versions were supported in part by NSF grants CCF-0428078, and CCF-0429567. This version was
supported in part by NSF grant CNS 07-09217.

References
[1] R. Sethi A. V. Aho and J. D. Ullman. Compilers. Principles, Techniques and Tools. Addison-Wesley,

1986.

22

[2] Graham M. Birtwistle, Ole-Johan Dahl, Bjorn Myhrhaug, and Kristen Nygaard. SIMULA Begin. Auer-
bach Publishers, Philadelphia, Penn., 1973.

[3] Daniel P. Friedman and Matthias Felleisen. The Little Schemer. MIT Press, fourth edition, 1996.

[4] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Essentials of Programming Languages.
The MIT Press, New York, NY, second edition, 2001.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, Mass., 1995.

[6] Michael A. Jackson. Principles of Program Design. Academic Press, London, 1975.

[7] Gary T. Leavens. Following the grammar. Technical Report 05-02a, Department of Computer Sci-
ence, Iowa State University, Ames, Iowa, 50011, January 2006. Available by anonymous ftp from
ftp.cs.iastate.edu.

[8] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming. The MIT
Press, Cambridge, Mass., 2004.

[9] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designing Object-Oriented Software.
Prentice-Hall, Englewood Cliffs, NJ 07632, 1990.

23

