
COP 4020 — Programming Languages I October 16, 2011

Homework 3: Declarative Programming
See Webcourses and the syllabus for due dates.
Don’t start these problems at the last minute! These are mostly programming problems that you will need time to
complete.
In this homework you will learn basic techniques of recursive programming over various types of
(recursively-structured) data, and more advanced functional programming techniques such as using higher-order
functions to abstracting from programming patterns, and using higher-order functions to model infinite data
[UseModels] [Concepts]. Many of the problems exhibit polymorphism [UseModels] [Concepts]. The problems as a
whole illustrate how functional languages work without hidden side-effects [EvaluateModels].
Answers to English questions should be in your own words; don’t just quote text from the textbook.
We will take some points off for duplicated code or code that is excessively hard to follow. Avoid duplicating code by
using helping functions or by using syntactic sugars and local definitions.
Code for programming problems should be written in Oz’s declarative model, so do not use either cells or cell
assignment in your Oz solutions. (Furthermore, note that the declarative model does not include the primitive IsDet
or the library function IsFree; thus you are also prohibited from using either of these functions in your solutions.)
But please use all linguistic abstractions and syntactic sugars in the declarative programming model that are helpful!
You should use helping functions whenever you find that useful. Unless we specifically say how you are to solve a
problem, feel free to use any functions that are compatible with the declarative model from the Oz library (base
environment), especially functions like Map and FoldR.
For all Oz programing exercises, you must run your code using the Mozart/Oz system. For programming exercises in
your favorite language, you should use the most standard version of the language you can find. For programming
problems for which we provide tests, you can find them all in a zip file, which you can download from problem 1’s
assignment on Webcourses. If the tests don’t pass, please try to say why they don’t pass, as this enhances
communication and makes commenting on the code easier and more specific to your problem.
What to Turn In: Turn in (on Webcourses) your code and output of your testing for each problem that requires code.
Please upload code as a plain (text) file with the name given in the problem or testing file and with the suffix .oz.
Please upload test output and English answers by pasting them into the answer box in the assignment on Webcourses.
If you have a mix of code and English for a problem, please use the answer box for the English and upload a .oz file
for the code. (In any case, don’t put spaces or tabs in your file names!)
Your code should compile with Oz, if it doesn’t you probably should keep working on it. If you don’t have time, at
least tell us that you didn’t get it to compile.
Don’t hesitate to contact the staff if you are stuck at some point.
For background, you should read Chapter 3 of the textbook [VH04]. Also read “Following the Grammar” [Lea07]
and follow its suggestions for organizing your code. You may also want to read a tutorial on the concepts of
functional programming languages, such as Hudak’s computing survey article mentioned in the syllabus. See also the
course code examples page (and the course resources page).

https://webcourses.ucf.edu/
http://www.eecs.ucf.edu/~leavens/COP4020/syllabus.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutUseModels
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutUseModels
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutEvaluateModels
https://webcourses.ucf.edu/
https://webcourses.ucf.edu/
http://www.eecs.ucf.edu/~leavens/COP4020/docs/follow-grammar.pdf
http://www.eecs.ucf.edu/~leavens/COP4020/syllabus.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/examples/index.html
http://www.eecs.ucf.edu/~leavens/COP4020/resources.shtml

2

Reading Problems
The problems in this section are intended to get you to read the textbook, ideally in advance of class meetings.

Read chapter 3, through section 3.1 of the textbook [VH04] and answer the following questions.

1. (5 points) [Concepts] [MapToLanguages]

How does one write deterministic programs in C, C++, or Java? (Give a brief explanation.)

Read section 3.2 of the textbook and answer the following questions.

2. (5 points) [UseModels]

In Oz, write an iterative function

ListMin: <fun {$ <List T>}: T>

that for some type T takes a non-empty list of elements of type T Ls, and returns the least element in Ls. The
following are examples that you can find in our test file LisMinTest.oz.

{Test {ListMin a|a|a|a|a|nil} '==' a}

{Test {ListMin z|nil} '==' z}

{Test {ListMin a|nil} '==' a}

{Test {ListMin a|z|nil} '==' a}

{Test {ListMin z|a|nil} '==' a}

{Test {ListMin a|b|c|d|a|c|e|z|nil} '==' a}

{Test {ListMin 4|0|2|0|nil} '==' 0}

{Test {ListMin 99|86|12|~3|nil} '==' ~3}

{Test {ListMin 100000|8600000|12222|~99999999999999999999999999999|nil}

'==' ~99999999999999999999999999999}

{Test {ListMin [now is the time 'for' change]} '==' change}

{Test {ListMin [the code examples page gives access to the code examples

You can assume that ListMin is called with a non-empty list as an argument.

Your code must have iterative behavior. (So it must use tail recursion!)

Put your code in a file ListMin.oz. After doing your own testing, run our tests in ListMinTest.oz. For this and
all coding problems, be sure to hand in both your code and the output of running our tests (see the instructions
above).

Skim section 3.3 and read section 3.4 through 3.4.1 of the textbook and answer the following questions.

3. [Concepts]

(a) (5 points) Give an example Oz expression, other than leaf, that defines a value of the type 〈BTree Int〉.
Recall that a 〈Literal〉 can be an atom such as atm and that 〈Int〉 contains both integer literals, such as 42.

(b) (2 points) Which of the following do not match the grammar for <List Literal>?

1. nil

2. a|b|c|d|e

3. a|b|c|d|e|nil

4. [a b c]

Read section 3.4.2 up to and including section 3.4.2.6 of the textbook, and read the “Following the Grammar”
handout.

http://www.eecs.ucf.edu/~leavens/COP4020/docs/follow-grammar.pdf

3

4. (0 points) [UseModels]
(Try the self-test on “following the grammar” on Webcourses.)

Read section 3.4.2.7, skim over sections 3.4.4 and 3.4.5, read section 3.4.6, and skim over 3.4.7 and 3.4.8 of the
textbook and answer the following questions.

5. [Concepts]
Some students take a liking to the Flatten function described in section 3.4.4 (on page 143) of the textbook. But
consider this: is calling Flatten on the list argument a useful first step in the solution of the following problems?
(For each answer “yes” or “no” and give a brief explanation; note that you are not being asked to program these!)
(a) (2 points) A function Has3List that takes a list of lists LL and returns true just when LL contains a list with

exactly three elements? For example, {Has3List [[a b] [c] [d e f] [g] [h]]} should return true, but
, and {Has3List [[a [] b]]} should return true, but {Has3List [[a b] [c] [d e] [] [g] [h]]}
should return false

(b) (2 points) A function InsertAfter that takes a list of lists LL and two atoms: AfterThis and What; this
function inserts What after each occurrence of AfterThis throughout LL. For example:
{InsertAfter [[a b c] [c p a]] a z} returns [a z b c] [c p a z]] and
{InsertAfter [[[[a] [[b c] []] [[[[c p [a]]]]]]]] a q} returns [[[[a q] [[b c] []] [[[[c p
[a q]]]]]]]].

Read section 3.5 of the textbook (skimming 3.5.3 and 3.5.4) and answer the following questions.

6. (0 points) (suggested practice) [Concepts] Ignoring statement sequences, which kernel language statements
might get into infinite loops?

Read section 3.6 of the textbook and answer the following questions.

7. (5 points) [Concepts]
Briefly describe what the function All, whose code is given below, does.

declare
fun {All Ls}

{FoldR Ls fun {$ X Y} X andthen Y end true}
end

Read section 3.7 of the textbook (you can just skim 3.7.3) and answer the following questions.

8. (5 points) [Concepts] [MapToLanguages]
Why should one use private (or protected) visibility to hide the internal representation of an abstract datatype in
C++, C#, or Java?

Read section 3.8 of the textbook (you can skim 3.8.1 through 3.8.3) and answer the following questions.

9. (5 points) [Concepts] [MapToLanguages] If one were to add input from files or direct input from a user as part
of the declarative programming model, what would change about the model?

Regular Problems

We expect you’ll do the problems in this section after reading the relevant parts of the chapter.

Iteration

Material on iteration and tail recursion is found in section 3.2 and 3.4.2.3 and 3.4.3.

10. (10 points) [UseModels]

https://webcourses.ucf.edu/

4

Do problem 5 in section 3.10 of the textbook [VH04] (iterative SumList).

Put your code in a file SumList.oz. After doing your own testing, run our tests in SumListTest.oz (see below).

% $Id: SumListTest.oz,v 1.3 2011/10/04 02:02:08 leavens Exp $

\insert 'SumList.oz'

\insert 'TestingNoStop.oz'

{StartTesting 'SumList $Revision: 1.3 $'}

{Test {SumList nil} '==' 0}

{Test {SumList 3|nil} '==' 3}

{Test {SumList ~2|3|nil} '==' 1}

{Test {SumList [7 8 ~2 3]} '==' 16}

{Test {SumList [1 0]} '==' 24}

{Test {SumList [4 4 2 1 99 105 3004 999999]} '==' 1003218}

{DoneTesting}

11. [MapToLanguages]

(a) (5 points) Carefully record the time you spend on the next part of this problem, and write in the answer box
on webcourses: (i) programming language you used and (ii) the number of minutes you spent on writing the
code for SumList itself in your favorite language, and (iii) the number of minutes you spent in writing tests,
testing, and debugging your code.

(b) (10 points) Using your favorite programming language, write SumList, from problem10 above, and test it.
If you are using Java, C++, or C for this problem, then you may use our implementation of Oz’s lists in
which you can findare in the subdirectories Java, C++, and C of the tests zip file that you can get from
webcourses (in the zip file attached to problem 1).
Hand in your code, including code for testing, as attachments. Paste the test output into the answer box.
Your testing code should be approximately what we did for testing in Oz (and thus should be separated from
the code for SumList.

Following the Grammar

Material on following the grammar is found in section 3.4, especially section 3.4.2, and in detail with many examples
in the “Following the Grammar” handout.

12. (10 points) [UseModels]

Write a function

Hep: <fun {$ <List Atom>}: <List Atom> >

that takes a list of atoms, Txt, and returns a list just like Txt but with the following substitutions made each time
they appear in Txt:

• you is replaced by u,

• are is replaced by r,

• your is replaced by ur,

• by_the_way is replaced by btw,

• for_your_information is replaced by fyi

• boyfriend is replaced by bf,

• girlfriend is replaced by gf,

• be_right_back is replaced by brb,

http://www.eecs.ucf.edu/~leavens/COP4020/docs/follow-grammar.pdf

5

• see_you is replaced by cya, and

• great is replaced by gr8.

This list is complete (for this problem).

The examples in Figure 1 are written using the Test procedure from the course library. They r also found in our
testing file HepTest.oz which u can get from webcourses (in the zip file attached to problem 1). Be sure to turn
in both ur code and the output of our tests on webcourses.

% $Id: HepTest.oz,v 1.1 2011/10/04 02:02:08 leavens Exp $

\insert 'Hep.oz'

\insert 'TestingNoStop.oz'

{StartTesting 'HepTest $Revision: 1.1 $'}

{Test {Hep nil} '==' nil}

{Test {Hep [you you you you]} '==' [u u u u]}

{Test {Hep [you know i will see_you soon]}

'==' [u know i will cya soon]}

{Test {Hep [by_the_way you must see my girlfriend she is great]}

'==' [btw u must see my gf she is gr8]}

{Test {Hep [for_your_information you are a pig see_you later when you find me a boyfriend]}

'==' [fyi u r a pig cya later when u find me a bf]}

{Test {Hep [by_the_way i will be_right_back]} '==' [btw i will brb]}

{DoneTesting}

Figure 1: Tests for problem 12.

Put ur code in a file Hep.oz and test using our tests. BTW, we will take some number of points off if u have
repeated code in ur solution. U can avoid repeated code by using a helping function or a case-expression. A
case-expression would be used in a larger expression to form the result list, like: case ... end |

13. (10 points) [UseModels]

Write a function

IsAList: <fun {$ <Value>}: <Bool> >

that takes an Oz Value, Val, and returns true just when Val is an association list (which in this problem we call an
“AList”). That is, it returns true if and only if Val is a list of #-pairs, as in Figure 2.

〈AList S T〉 ::= nil
| 〈List 〈#-Pair S T〉〉

〈#-Pair S T〉 ::= 〈S〉 # 〈T〉

Figure 2: The grammar for the type 〈AList S T〉, and 〈#-Pair S T〉. Here S and T are arbitrary types, and 〈List U〉
denotes the usual type of lists of some type (U).

Note that 〈Value〉 is the type of all Oz values [DKS06, Section 2].

Figure Figure 3 on the following page shows the tests from our test file IsAListTest.oz.

Put your code in a file IsAList.oz and test using our tests.

14. (10 points) [UseModels]

In Oz, write a function

Invert: <fun {$ <AList S T>}: <AList T S> >

http://www.eecs.ucf.edu/~leavens/COP4020/lib.zip

6

% $Id: IsAListTest.oz,v 1.1 2011/10/06 02:14:35 leavens Exp $

\insert 'IsAList.oz'

\insert 'TestingNoStop.oz'

{StartTesting 'IsAList $Revision: 1.1 $'}

{Test {IsAList nil} '==' true}
{Test {IsAList [a#1 b#2 c#3 a#4 b#5]} '==' true}
{Test {IsAList [a#1 a#4 a#1]} '==' true}
{Test {IsAList fun {$ X} X end} '==' false}
{Test {IsAList not_an_alist} '==' false}
{Test {IsAList 3} '==' false}
{Test {IsAList a#b} '==' false}
{Test {IsAList [a]} '==' false}
{Test {IsAList (x#24)|(y#25)|(z#26)|nil} '==' true}
{Test {IsAList (x#24)|(y#25)|oops|(z#26)|nil} '==' false}
{Test {IsAList (x#24)|(y#25)|(z#26)} '==' false}
{Test {IsAList [i#fun {$ X} X end k4#fun {$ X} 4 end]} '==' true}
{Test {IsAList [b#true c#3 d#"four"]} '==' true}
local BigAList = {fun {$ Len}

for I in 1 .. Len collect: C do {C I#[I I+1]} end
end
10000}

in
{Test {IsAList BigAList} '==' true}
{Test {IsAList atom|BigAList} '==' false}

end
{DoneTesting}

Figure 3: Tests for 13.

that takes an <AList S T> and returns an <AList T S> with the same number of elements, but with each
〈#-Pair〉 being reversed. (See Figure 2 on the previous page for the grammar of ALists.) Thus, if one thinks of an
<AList S T> as a binary relation between values of type S and T, the result is the mathematical inverse (or
transpose) of the relation. See Figure 4 for examples from our test file InvertTest.oz.

% $Id: InvertTest.oz,v 1.1 2011/10/06 02:14:35 leavens Exp $

\insert 'Invert.oz'

\insert 'TestingNoStop.oz'

{StartTesting 'Invert $Revision: 1.1 $'}

{Test {Invert nil} '==' nil}

{Test {Invert [a#1 b#2 c#3 a#4 b#5]} '==' [1#a 2#b 3#c 4#a 5#b]}

{Test {Invert [a#1 a#4 a#1]} '==' [1#a 4#a 1#a]}

{Test {Invert (x#24)|(y#25)|(z#26)|nil} '==' (24#x)|(25#y)|(26#z)|nil}

{Test {Invert [b#true c#3 d#four]} '==' [true#b 3#c four#d]}

local BigAList = {fun {$ Len}

for I in 1 .. Len collect: C do {C I#[I I+1]} end
end
10000}

InvertedBigAList = {fun {$ Len}

for I in 1 .. Len collect: C do {C [I I+1]#I} end
end
10000}

in
{Test {Invert BigAList} '==' InvertedBigAList}

{Test {Invert InvertedBigAList} '==' BigAList}

{Test {Invert {Invert BigAList}} '==' BigAList}

end
{DoneTesting}

Figure 4: Tests for problem 14.

Put your code in a file Invert.oz and test it using our tests. (As described on the first page, you are to hand in
both the code and the output of our tests.)

7

15. [MapToLanguages]

(a) (5 points) Carefully record the time you spend on the next part of this problem, and write in the answer box
on webcourses: (i) programming language you used and (ii) the number of minutes you spent on writing the
code for Invert itself in your favorite language, and (iii) the number of minutes you spent in writing tests,
testing, and debugging your code.

(b) (10 points) Using your favorite programming language, write Invert, from problem14 above, and test it. If
you are using Java, C++, or C for this problem, then you may use our implementation of Oz’s lists. You can
find these in the subdirectories Java, C++, and C of the tests zip file that you can get from webcourses (in the
zip file attached to problem 1). You can represent the type 〈#-Pair S T〉 in Java or C# or C++ by using a
simple class with two public fields and a constructor. In C, you can represent the type 〈#-Pair S T〉 as a
struct (and to work with our lists, it may be best to manipulated pointers to such structs).
Hand in your code, including code for testing, as attachments. Paste the test output into the answer box.
Your testing code should be approximately what we did for testing in Oz (and thus should be separated from
the code for Invert.

8

16. (15 points) [UseModels]

In Oz, implement the function

AppendMap: <fun {$ <List T> <fun {$ T}: <List S> >}: <List S> >

that takes a list Lst of elements of some type T, and a function F that takes an element of type T and returns a list
of some type S, and which acts as follows. A call of the form {AppendMap Lst F} returns a list that is the
concatenation (using Append) of all the lists that result from applying F to teach of the elements in Lst. File
AppendMapTest.oz contains various examples (see Figure 5).

% $Id: AppendMapTest.oz,v 1.5 2011/10/06 02:14:35 leavens Exp $

\insert 'AppendMap.oz'

\insert 'TestingNoStop.oz'

{StartTesting 'AppendMap $Revision: 1.5 $'}

{Test {AppendMap nil fun {$ X} [X+1] end} '==' nil}

{Test {AppendMap [7 6 5 4 7] fun {$ X} [X+1] end} '==' [8 7 6 5 8]}

{Test {AppendMap [7 6 5 4 7] fun {$ X} [X X+1] end} '==' [7 8 6 7 5 6 4 5 7 8]}

{Test {AppendMap [a b c] fun {$ X} if X == b then nil else [X] end end}
'==' [a c]}

{Test {AppendMap [a b c] fun {$ X} if X \= b then nil else [X] end end}
'==' [b]}

{Test {AppendMap [a b c] fun {$ X} [X X X] end}
'==' [a a a b b b c c c]}

{Test {AppendMap [a b c] fun {$ X} [[X] [X]] end}
'==' [[a] [a] [b] [b] [c] [c]]}

{DoneTesting}

Figure 5: Tests for Problem 16.

17. (50 points) [UseModels]

This is a problem about recursion over lists, where the elements are #-pairs. In this problem you will write
several functions that operate on the abstract data type, <BRel S T>, which is a type of binary relations between
types S and T. We represent this type of binary relations as the type <List <#-Pair S T», that is lists whose
elements are #-pairs of elements of type S and T.

In this problem, we give you a file BRel.oz containing some of the code for implementing the type <BRel S T>.
Your task is to fill in the remaining code, as indicated in the file. Our provided code is available from the
Webcourses assignment for this problem and in the zip file for the homework. You need to read the code for the
operations we provide to understand it. This code assumes that binary relations are represented by lists of #-pairs
of keys and values. The code assumes that a given #-pair occurs only once in a representation’s list. The code
considers that values of types S and T can be compared using ==.

Your task is to write each of the following functions on sets (given with their types below).

BRelApply: <fun {$ <BRel S T> <S>}: <List T> >
BRelUnion: <fun {$ <BRel S T> <BRel S T>}: <BRel S T> >
BRelDiff: <fun {$ <BRel S T> <BRel S T>}: <BRel S T> >
BRelCompose: <fun {$ <BRel S T> <BRel T U>}: <BRel S U> >
ProductBRel: <fun {$ <List S> <List T>}: <BRel S T> >

All these functions return new binary relations; none modify or mutate their arguments. (This is declarative
programming!) The function BRelApply is given a <BRel S T> and a key K of type S; it returns a list of all the
values (of type T) that the relation associates K to. (If the relation does not relate K to anything, then the result is
nil.) BRelUnion returns the union of its two argument relations, so that every relationship in the two arguments
is represented in the result. BRelDiff returns the binary relation in the first argument, without any relationships

https://webcourses.ucf.edu/

9

that occur in the second argument. BRelCompose returns the composition of the given relations, so that if the first
argument relates x to y, and the second relation relates y to z, then the result relates x to z. ProductBRel takes
two lists and returns the Cartesian product of the two lists; that is, it returns the relation that relates each element
of the first list to each element of the second list.

Figure 6 on the next page and Figure 7 on page 11 give tests that use these functions from our file BRelTest.oz.

To start solving this problem, download the file BRel.oz from Webcourses to your directory. Note that you must
keep the name as BRel.oz. Then add your own code as indicated in the file. (This file is also included in our
testing zip file, so if you have already downloaded that, then you have it already.)

In your solution you may not modify any of the provided functions.

Hint: these are really just a bunch of problems about recursion over flat lists.

Hint: To save yourself time, you should write and test each of your functions one by one. It really will save time
to test your code yourself; just trying to run our test cases may be frustrating, because you won’t have much idea
of what went wrong (due to the way our tests are written, using Assert).

After doing your own testing, then run our test cases from BRelTest.oz, and turn in your source code in
BRel.oz. Paste the output of our tests into the answer box on webcourses.

https://webcourses.ucf.edu/

10

% $Id: BRelTest.oz,v 1.1 2011/10/06 02:14:35 leavens Exp $

\insert 'BRel.oz'

\insert 'TestingNoStop.oz'

{System.showInfo ""}

{Show 'Since these tests use Assert, you will only see'}

{Show 'messages about what is being tested and failure messages if tests fail.'}

{StartTesting 'BRelTest $Revision: 1.1 $'}

{StartTesting 'Provided code'}

{Assert {BRelEqual {AsBRel nil} {EmptyBRel}}}

{Assert {BRelEqual {AsBRel [3#c 1#a 2#b 3#c]} {AsBRel [1#a 2#b 3#c]}}}

{Assert {BRelHas {AsBRel [3#c 1#a 2#b 3#c]} 2 b}}

{Assert {Not {BRelHas {AsBRel [3#c 1#a 2#b 3#c]} 2 c}}}

{Assert {Not {BRelHasKey {AsBRel [3#c 1#a 2#b 3#c]} a}}}

{Assert {BRelHasKey {AsBRel [3#c 1#a 2#b 3#c]} 3}}

{Assert {IsBRel {AsBRel [3#c 1#a 2#b 3#c]}}}

{Assert {BRelSubset {EmptyBRel} {AsBRel [3#c 1#a 2#b 3#c]}}}

{Assert {Not {BRelSubset {AsBRel [1#c]} {AsBRel [3#c 1#a 2#b 3#c]}}}}

{StartTesting 'BRelAdd'}

{Assert {BRelEqual {BRelAdd {EmptyBRel} 1 1} {AsBRel [1#1]}}}

{Assert {BRelEqual {BRelAdd {EmptyBRel} c 3} {AsBRel [c#3]}}}

{Assert {BRelEqual {BRelAdd {AsBRel [a#b b#c c#d]} d e}

{AsBRel [a#b b#c c#d d#e]}}}

{Assert {BRelEqual {BRelAdd {EmptyBRel} c 3} {AsBRel [c#3]}}}

{Assert {BRelEqual {BRelAdd {BRelAdd {EmptyBRel} 2 funky} 3 town}

{AsBRel [2#funky 3#town]}}}

{Assert {BRelEqual {BRelAdd {AsBRel [2#3 1#2]} 9 10}

{BRelAdd {BRelAdd {BRelAdd {EmptyBRel} 9 10} 2 3} 1 2}}}

{StartTesting 'BRelApply'}

{Assert {BRelApply {AsBRel [a#b b#c c#d d#e]} c} == [d]}

{Assert {BRelApply {AsBRel [a#b a#c a#d a#g]} a} == [b c d g]}

{Assert {BRelApply {AsBRel [a#c a#d a#g]} a} == [c d g]}

{Assert {BRelApply {AsBRel [3#c 1#a 2#b 3#d]} a} == nil}

{Assert {BRelApply {AsBRel [3#c 1#a 2#b 3#d]} 3} == [c d]}

{Assert {BRelApply {AsBRel [1#a 2#b 3#d]} 3} == [d]}

{Assert {BRelApply {AsBRel [3#c 1#a 2#b 3#d]} 4} == nil}

{Assert {BRelApply {AsBRel [3#c 1#a 2#b 3#d]} 1} == [a]}

{StartTesting 'BRelUnion'}

{Assert {BRelEqual {BRelUnion {EmptyBRel} {EmptyBRel}} {EmptyBRel}}}

{Assert {BRelEqual {BRelUnion {EmptyBRel} {AsBRel [3#c 1#a 2#b 3#d]}}

{AsBRel [3#c 1#a 2#b 3#d]}}}

{Assert {BRelEqual {BRelUnion {AsBRel [3#c 1#a 2#b 3#d]}

{AsBRel [1#a 3#c 2#b 3#d]}}

{AsBRel [3#c 1#a 2#b 3#d]}}}

{Assert {BRelEqual {BRelUnion {AsBRel [3#c 1#a 2#b 3#d]}

{AsBRel [7#f 8#g 9#i 10#k]}}

{AsBRel [3#c 1#a 2#b 3#d 7#f 8#g 9#i 10#k]}}}

Figure 6: Tests for problem 17, part 1 of 2.

11

{StartTesting 'BRelDiff'}

{Assert {BRelEqual {BRelDiff {AsBRel [3#c 1#a 2#b 3#d]} {EmptyBRel}}

{AsBRel [3#c 1#a 2#b 3#d]}}}

{Assert {BRelEqual {BRelDiff {AsBRel [3#c 1#a 2#b 3#d]}

{AsBRel [3#c 1#a 2#b 3#d]}}

{EmptyBRel}}}

{Assert {BRelEqual {BRelDiff {AsBRel [3#c 1#a 2#b 3#d]} {AsBRel [3#d 2#b]}}

{AsBRel [3#c 1#a]}}}

{Assert {BRelEqual {BRelDiff {AsBRel [3#c 1#a 2#b 3#d]} {AsBRel [3#e 2#c]}}

{AsBRel [3#c 1#a 2#b 3#d]}}}

{Assert {BRelEqual {BRelDiff {AsBRel [1#2 2#3 5#6 3#4 7#8]}

{AsBRel [7#8 2#3]}}

{AsBRel [1#2 5#6 3#4]}}}

{Assert {BRelEqual {BRelDiff {AsBRel [3#c 1#a 2#b 3#d]}

{AsBRel [7#f 8#g 9#i 10#k]}}

{AsBRel [3#c 1#a 2#b 3#d]}}}

{StartTesting 'BRelCompose'}

{Assert {BRelEqual {BRelCompose {EmptyBRel} {AsBRel [2#b 3#c]}} {EmptyBRel}}}

{Assert {BRelEqual {BRelCompose {EmptyBRel} {EmptyBRel}} {EmptyBRel}}}

{Assert {BRelEqual {BRelCompose {AsBRel [1#2 2#3]} {AsBRel [2#b 3#c]}}

{AsBRel [1#b 2#c]}}}

{Assert {BRelEqual {BRelCompose {AsBRel [1#3 2#3]} {AsBRel [3#b 3#c]}}

{AsBRel [1#b 1#c 2#b 2#c]}}}

{StartTesting 'ProductBRel'}

{Assert {BRelEqual {ProductBRel nil [b c]} {EmptyBRel}}}

{Assert {BRelEqual {ProductBRel [b c] nil} {EmptyBRel}}}

{Assert {BRelEqual {ProductBRel [b c] [1 2 3]}

{AsBRel [b#1 b#2 b#3 c#1 c#2 c#3]}}}

{Assert {BRelEqual {ProductBRel [1 2 3] [b c]}

{AsBRel [1#b 2#b 3#b 1#c 2#c 3#c]}}}

{Assert {BRelEqual {ProductBRel [1] [a]}

{AsBRel [1#a]}}}

{DoneTesting}

Figure 7: Tests for problem 17, continued, part 2 of 2.

12

18. (20 points) [UseModels]

This is a problem about the window layouts discussed in the “Following the Grammar” handout, section 5.2.

Write a function

ChangeChannel: <fun {$ <WindowLayout> <Atom> <Atom>}: <WindowLayout>

that takes a window layout WL, two atoms New and Old, and returns a window layout that is just like WL except that
all windows whose name field’s value is (== to) Old in the argument WL are changed to New in the result.

You can assume that the input has been constructed according to the grammar. So you should not check for
arguments that do not conform to this grammar. However, that we will take points off if you don’t follow the
grammar in your solution!

Figure 8 on the next page shows examples.

http://www.eecs.ucf.edu/~leavens/COP4020/docs/follow-grammar.pdf

13

\insert 'ChangeChannel.oz'

\insert 'TestingNoStop.oz'

{StartTesting 'ChangeChannel $Revision: 1.6 $'}

{Test {ChangeChannel vertical(nil) cnn simpsons} '==' vertical(nil)}

{Test {ChangeChannel horizontal(nil) cnn simpsons} '==' horizontal(nil)}

{Test {ChangeChannel window(name: simpsons width: 30 height: 40) cnn simpsons}

'==' window(name: cnn width: 30 height: 40)}

{Test {ChangeChannel

horizontal([window(name: simpsons width: 30 height: 40)]) simpsons snl}

'==' horizontal([window(name: simpsons width: 30 height: 40)])}

{Test {ChangeChannel

vertical([window(name: snl width: 90 height: 50)

window(name: snl width: 180 height: 120)])

futurama snl}

'==' vertical([window(name: futurama width: 90 height: 50)

window(name: futurama width: 180 height: 120)])}

{Test {ChangeChannel

horizontal([window(name: cbs width: 30 height: 15)

vertical([window(name: cnn width: 89 height: 55)

window(name: cbs width: 101 height: 45)])

horizontal([window(name: cbs width: 92 height: 150)])])

dailyshow cbs}

'==' horizontal([window(name: dailyshow width: 30 height: 15)

vertical([window(name: cnn width: 89 height: 55)

window(name: dailyshow width: 101 height: 45)])

horizontal([window(name: dailyshow width: 92 height: 150)])

])}

{Test {ChangeChannel

vertical(

[vertical([window(name: simpsons width: 30 height: 40)])

horizontal([horizontal([window(name: news width: 5 height: 5)])])

horizontal([window(name: simpsons width: 30 height: 15)

window(name: futurama width: 89 height: 55)])])

nbc simpsons}

'==' vertical(

[vertical([window(name: nbc width: 30 height: 40)])

horizontal([horizontal([window(name: news width: 5 height: 5)])])

horizontal([window(name: nbc width: 30 height: 15)

window(name: futurama width: 89 height: 55)])])}

{DoneTesting}

Figure 8: Tests for problem 18.

14

19. (25 points) [UseModels]

This is a problem about the statement and expression grammar from the “Following the Grammar” handout,
section 5.5.

Write a function

NegateIfs: <fun {$ <Statement>}: <Statement>

that takes a statement Stmt, and returns a statement that is just like Stmt except that all ifStmt statements of the
form ifStmt(E S) that occur anywhere within Stmt are replaced by
ifStmt(equalsExp(E varExp(false)) S). This process occurs recursively for all subparts of Stmt, even within
E and S. Figure 9 shows various examples.

\insert 'NegateIfs.oz'

\insert 'TestingNoStop.oz'

{StartTesting 'NegateIfs $Revision: 1.5 $'}

{Test {NegateIfs expStmt(numExp(3))} '==' expStmt(numExp(3))}

{Test {NegateIfs expStmt(varExp(y))} '==' expStmt(varExp(y))}

{Test {NegateIfs expStmt(equalsExp(varExp(y) varExp(z)))}

'==' expStmt(equalsExp(varExp(y) varExp(z)))}

{Test {NegateIfs assignStmt(x numExp(3))} '==' assignStmt(x numExp(3))}

{Test {NegateIfs ifStmt(varExp(true) assignStmt(x numExp(3)))}

'==' ifStmt(equalsExp(varExp(true) varExp(false)) assignStmt(x numExp(3)))}

{Test {NegateIfs expStmt(beginExp(nil numExp(3)))}

'==' expStmt(beginExp(nil numExp(3)))}

{Test {NegateIfs

expStmt(beginExp([ifStmt(varExp(true) assignStmt(x numExp(3)))

assignStmt(y numExp(4))]

varExp(y)))}

'==' expStmt(beginExp([ifStmt(equalsExp(varExp(true) varExp(false))
assignStmt(x numExp(3)))

assignStmt(y numExp(4))]

varExp(y)))}

{Test {NegateIfs

ifStmt(beginExp([ifStmt(varExp(true) assignStmt(x numExp(3)))

assignStmt(y numExp(4))]

varExp(y))

assignStmt(q beginExp([ifStmt(varExp(m) expStmt(numExp(7)))]

varExp(m))))}

'==' ifStmt(equalsExp(beginExp([ifStmt(equalsExp(varExp(true) varExp(false))
assignStmt(x numExp(3)))

assignStmt(y numExp(4))]

varExp(y))

varExp(false))
assignStmt(q beginExp([ifStmt(equalsExp(varExp(m) varExp(false))

expStmt(numExp(7)))]

varExp(m))))}

{DoneTesting}

Figure 9: Tests for Problem 19.

Be sure to use a helping function for expressions, so that your code follows the grammar! We will take points off
if your code does not follow the grammar.

http://www.eecs.ucf.edu/~leavens/COP4020/docs/follow-grammar.pdf

15

Using Libraries and Higher-Order Functions

Material on higher-order functions is found in section 3.6 of the textbook. See also the course’s code examples page.

20. [UseModels]

In Oz, write a function

Capitalize: <fun {$ <List <String> >}: <List <String> > >

that takes a list of non-empty strings and returns a list of strings such that {Capitalize Strings} is the same as
Strings, but with the first character in each String within Strings changed from lower to upper case.

You can use the Oz built-in function Char.toUpper to convert a character from lower to upper case. (This
function leaves characters that are not lower case characters unchanged.)

In this problem you will implement Capitalize twice:

(a) (5 points) by using the for loop with collect: in Oz (see the Oz documentation or section 3.6.3 of the text
[VH04]), and

(b) (5 points) by using Oz’s built in list function Map. (see the code examples page and also Section 6.3 of “The
Oz Base Environment” [DKS06]).

Name your 2 solutions: CapitalizeFor, CapitalizeMap, and put them both in a file named Capitalize.oz.

For the for loop, be sure to use the form with collect:, as only that form of the for loop is an expression.

Hint: since you can assume that each of the strings in Strings is non-empty, you may find it convenient to use
pattern matching in the declarations of the for loop and in the function passed to Map.

You can test each of your solution functions by passing it as an argument to the higher-order procedure
CapitalizeTest in the file CapitalizeTest.oz (see Figure 10 on the following page).

Figure 10 on the next page also shows how to use the procedure CapitalizeTest in a way that will work if you
name each of your solutions as indicated, and put them all in a file named Capitalize.oz.

21. (10 points) [UseModels] [Concepts]

Write a function

Curry: <fun {$ <fun {$ S T}: U>}: <fun {$ S}: <fun {$ T}: U> > >

that takes a two-argument function, F, and returns curried version of F. Figure 11 on the following page gives
some examples, found in the file CurryTest.oz.

Hint: Note that a 2-argument function named F is equivalent to fun {$ X Y} {F X Y} end.

http://www.eecs.ucf.edu/~leavens/COP4020/examples/index.html

16

% $Id: CapitalizeTest.oz,v 1.5 2011/10/06 02:14:35 leavens Exp $

\insert 'Capitalize.oz'

\insert 'TestingNoStop.oz'

declare
{StartTesting 'CapitalizeTest $Revision: 1.5 $'}

proc {CapitalizeTest CapitalizeFun}

{TestLOS {CapitalizeFun nil} '==' nil}

{TestLOS {CapitalizeFun ["the" "computer" "science" "way" "of" "the" "world"]}

'==' ["The" "Computer" "Science" "Way" "Of" "The" "World"]}

{TestLOS {CapitalizeFun ["a" "tale" "of" "two" "cities" "by" "charles" "dickens"]}

'==' ["A" "Tale" "Of" "Two" "Cities" "By" "Charles" "Dickens"]}

{TestLOS {CapitalizeFun ["z"]} '==' ["Z"]}

{TestLOS {CapitalizeFun ["hand" "in" "test" "output!"]}

'==' ["Hand" "In" "Test" "Output!"]}

end

{StartTesting 'Part A'}

{CapitalizeTest CapitalizeFor}

{StartTesting 'Part B'}

{CapitalizeTest CapitalizeMap}

{DoneTesting}

Figure 10: Test procedure for Problem 20 and its use.

% $Id: CurryTest.oz,v 1.2 2011/10/06 02:14:35 leavens Exp $

\insert 'Curry.oz'

\insert 'TestingNoStop.oz'

{StartTesting 'Curry'}

{Test {{{Curry fun {$ X Y} 2*X*X+3*Y end} 10} 5} '==' 2*10*10+3*5}

{Test {{{Curry fun {$ X Y} X#Y end} 10} 5} '==' 10#5}

{Test {{{Curry Number.'+'} 3} 6} '==' 9}

{Test {{{Curry Number.'+'} 5} 6} '==' 11}

local CA = {Curry Append}

in
{Test {{CA [1 2 3]} [4 5 6]} '==' [1 2 3 4 5 6]}

{Test {{CA [a good time]} [was had by all]}

'==' [a good time was had by all]}

end
{DoneTesting}

Figure 11: Examples for problem 21.

17

22. (5 points) [UseModels] [Concepts]

Define a function

SearchForZero: <fun {$ <fun {$ <Int>}:<Int> >}: <Int> >

that takes an integer-valued function F as an argument, and returns the least natural number N such that
{F N} == 0. (In this problem “natural numbers” means non-negative Ints, i.e., 0, 1, 2,) Test the examples
below by using the file SearchForZeroTest.oz (Figure 12), which inserts the actual examples from the file and
SearchForZeroBodyTest.oz (Figure 13).

% $Id: SearchForZeroTest.oz,v 1.1 2010/02/16 22:09:04 leavens Exp $

\insert 'TestingNoStop.oz'

\insert 'SearchForZero.oz'

\insert 'SearchForZeroBodyTest.oz'

Figure 12: The file SearchForZeroTest.oz.

% $Id: SearchForZeroBodyTest.oz,v 1.3 2011/10/06 02:14:35 leavens Exp $

{StartTesting 'SearchForZeroBodyTest $Revision: 1.3 $'}

{Test {SearchForZero fun {$ X} if X == 3 then 0 else 5 end end} '==' 3}

{Test {SearchForZero fun {$ X} 5*X - 10 end} '==' 2}

{Test {SearchForZero fun {$ N} N*N - 36 end} '==' 6}

{DoneTesting}

Figure 13: The file SearchForZeroBodyTest.oz.

18

23. (5 points) [UseModels] [Concepts]

Without using SearchForZero, define a function

SearchForFixedPoint: <fun {$ <fun {$ <Int>}: <Int> >}: <Int> >

that takes an integer-valued function F and returns the least fixed point of F in the non-negative integers. That is,
{SearchForFixedPoint F} returns the least non-negative integer N such that {F N} == N.

Test the examples below by feeding the file SearchForFixedPointTest.oz (Figure 14) which inserts the actual
examples from the file SearchForFixedPointBodyTest.oz (Figure 15).

% $Id: SearchForFixedPointTest.oz,v 1.1 2010/02/16 22:08:49 leavens Exp $

\insert 'TestingNoStop.oz'

\insert 'SearchForFixedPoint.oz'

\insert 'SearchForFixedPointBodyTest.oz'

Figure 14: The file SearchForFixedPointTest.oz.

% $Id: SearchForFixedPointBodyTest.oz,v 1.3 2011/10/06 02:14:35 leavens Exp $

{StartTesting 'SearchForFixedPointBodyTest $Revision: 1.3 $'}

{Test {SearchForFixedPoint fun {$ X} X end} '==' 0}

{Test {SearchForFixedPoint fun {$ X} if X == 3 then 3 else 7 end end} '==' 3}

{Test {SearchForFixedPoint fun {$ N} {Nth [8 7 6 5 4 3 2 1 0] N+1} end} '==' 4}

{Test {SearchForFixedPoint fun {$ N} N*N - 42 end} '==' 7}

{DoneTesting}

Figure 15: The file SearchForFixedPointBodyTest.oz.

19

24. (20 points) [UseModels] [Concepts]

Define a curried function SearchForMaker that is a generalization of SearchForZero and SearchForFixedPoint.
(The exact type of SearchForMaker is for you to decide.) Put your code in a file SearchForMaker.oz.

Then write a testing file SearchForMakerTesting.oz that shows how to use your definition of the function
SearchForMaker to define both functions SearchForZero and SearchForFixedPoint. Your testing file should
continue to runs the tests in both SearchForZeroBodyTest.oz and SearchForFixedPointBodyTest.oz, to test
these definitions. Your function SearchForMaker should be able to be instantiated (by passing it a function
argument) to produce both of these other functions. That is, you should have in your file
SearchForMakerTesting.oz something like the code in Figure 16, where you have to fill in appropriate function
arguments for SearchForMaker.

\insert 'SearchForMaker.oz'
\insert 'TestingNoStop.oz'
{StartTesting 'SearchForZero'}
SearchForZero = {SearchForMaker fun ... end}
\insert 'SearchForZeroBodyTest.oz'
{StartTesting 'SearchForFixedPoint'}
SearchForFixedPoint = {SearchForMaker fun ... end}
\insert 'SearchForFixedPointBodyTest.oz'

Figure 16: Outline of the code for your file SearchForMakerTesting.oz.

Turn in both your code and the file SearchForMakerTesting.oz that you wrote, as well as the output from
running the tests in SearchForMakerTesting.oz.

25. (15 points) [UseModels]

Using FoldR define

Count: <fun {$ <List T> <T>}: <Int> >

that, for some type T, takes two arguments: Lst, which is a list of values of type T, and Elem, which is a value of
type T. The function you are to write, Count, returns an integer that is equal to the number of times that an
element equal to Elem is found in Lst. Use the == operator to tell whether an element of Lst is equal to Elem. See
Figure 17 for examples.

\insert 'Count.oz'

{StartTesting 'CountTest $Revision: 1.1 $'}

{Test {Count nil 7} '==' 0}

{Test {Count [7 2 1 7 3] 7} '==' 2}

{Test {Count [2 1 7 3] 7} '==' 1}

{Test {Count [a g o o d t i m e] o} '==' 2}

{Test {Count [a g o o d t i m e] e} '==' 1}

{Test {Count [e e e k s a i d m i n e e] e} '==' 5}

{DoneTesting}

Figure 17: Tests for Problem 25.

To properly use FoldR to define your solution, make sure that your code for this problem looks like the following
outline. (You can also use helping functions.)

fun {Count Lst Elem}
{FoldR
...

20

...
}

end

21

The next three problems work with the type “Music,” as defined by the following grammar. Note that all the 〈Int〉s
that occur in a 〈Music〉 are guaranteed to be non-negative.

〈Music〉 ::=
pitch(〈Int〉)

| chord(〈List Music〉)
| sequence(〈List Music〉)

26. (10 points) [UseModels] Define a function

HighestNote: <fun {$ <Music>}: <Number> >

that takes a 〈Music〉 and returns the largest 〈Int〉 that occurs within it. Note that you can use the built-in Oz
function Max in your solution, as well as functions such as Map and FoldR to deal with the lists. For this problem
we guarantee that the 〈Music〉 arguments passed to HighestNote will not contain empty lists.

Do not pass lists directly to HighestNote, as that will not follow the grammar! We will take points off if you do
not follow the grammar by using separate helping functions (or built-in functions such as FoldR or Map) to deal
with lists.

You can test your definition of HighestNote using the code given in HighestNoteTest.oz (see Figure 18 on the
following page), which uses the examples from the file HighestNoteBodyTest (also in the figure). The latter
gives some examples. Note that in this problem some of the lists may be empty.

27. (15 points) [UseModels] Define a function

Transpose: <fun {$ <Music> <Int>}: <Music> >

that takes a music value, Song, and a number, Delta, and produces a music value that is just like Song, but in
which each integer has been replaced by that integer plus Delta. (This is what musicians call transposition,
hence the name.)

There are tests for Transpose in two files. The file TransposeTest.oz (Figure 19 on the next page) is the driver
that you use to run the tests. The file TransposeBodyTest.oz (Figure 20 on page 23) contains the actual test
cases.

28. (30 points) [Concepts] [UseModels] By generalizing your answers to the above problems, define an Oz function

FoldMusic: <fun {$ <Music> <fun {$ <Int>}: T>
<fun {$ <List Music>}: T> <fun {$ <List Music>}: T>}: T>

that is analogous to FoldR for lists. The arguments to FoldMusic are a 〈Music〉, Song, a function PFun that works
on the 〈Int〉 in a pitch record, a function CFun that works on the 〈List Music〉 in a chord record, and a function
SFun that works on the 〈List Music〉 in a sequence record.

Figure 21 on page 24 has testing code, in FoldMusicTest.oz, tests that your definition of FoldMusic can be used
to define HighestNote, and Transpose.

22

% $Id: HighestNoteTest.oz,v 1.1 2010/02/17 01:35:57 leavens Exp $

\insert 'TestingNoStop.oz'

\insert 'HighestNote.oz'

\insert 'HighestNoteBodyTest.oz'

% $Id: HighestNoteBodyTest.oz,v 1.5 2011/10/06 02:15:37 leavens Exp leavens $

{StartTesting 'HighestNoteBodyTest $Revision: 1.5 $'}

{Test {HighestNote pitch(3)} '==' 3}

{Test {HighestNote chord([pitch(1) pitch(3) pitch(5) pitch(8)])} '==' 8}

{Test {HighestNote chord([pitch(3) sequence([pitch(3) pitch(5) pitch(8)])])}

'==' 8}

{Test {HighestNote sequence([pitch(3)

chord([pitch(1) pitch(3) pitch(5) pitch(8)])

chord([pitch(2) sequence([pitch(1) pitch(3)])])

sequence([chord([pitch(5) pitch(9)])

chord([pitch(6) pitch(8)])

pitch(1)])

])}

'==' 9}

{DoneTesting}

Figure 18: Testing for problem 26.

% $Id: TransposeTest.oz,v 1.1 2010/02/17 01:57:10 leavens Exp $

\insert 'TestingNoStop.oz'

\insert 'Transpose.oz'

\insert 'TransposeBodyTest.oz'

Figure 19: Testing for problem 27.

23

% $Id: TransposeBodyTest.oz,v 1.3 2011/10/06 02:14:35 leavens Exp $

{StartTesting 'TransposeBodyTest $Revision: 1.3 $'}

{Test {Transpose pitch(3) 7} '==' pitch(10)}

{Test {Transpose pitch(10) 5} '==' pitch(15)}

{Test {Transpose chord(nil) ~3} '==' chord(nil)}

{Test {Transpose chord([pitch(1) pitch(5) pitch(8)]) 2}

'==' chord([pitch(3) pitch(7) pitch(10)])}

{Test {Transpose sequence(nil) ~1} '==' sequence(nil)}

{Test {Transpose sequence([pitch(1) pitch(5) pitch(8)]) 2}

'==' sequence([pitch(3) pitch(7) pitch(10)])}

{Test {Transpose

sequence([chord([pitch(1) pitch(5) pitch(8)])

chord([pitch(3) pitch(7) pitch(0)])

chord([pitch(7) pitch(5) pitch(9)])])

1}

'==' sequence([chord([pitch(2) pitch(6) pitch(9)])

chord([pitch(4) pitch(8) pitch(1)])

chord([pitch(8) pitch(6) pitch(10)])])}

{Test {Transpose

chord([sequence([chord([pitch(1) pitch(5) pitch(8)])

chord([pitch(3) pitch(7) pitch(0)])

chord([pitch(7) pitch(5) pitch(9)])])

sequence([pitch(1) pitch(1)])

chord([sequence(nil) sequence([pitch(3)])])])

1}

'==' chord([sequence([chord([pitch(2) pitch(6) pitch(9)])

chord([pitch(4) pitch(8) pitch(1)])

chord([pitch(8) pitch(6) pitch(10)])])

sequence([pitch(2) pitch(2)])

chord([sequence(nil) sequence([pitch(4)])])])}

{Test {Transpose

sequence([chord([sequence([chord([pitch(1) pitch(5) pitch(8)])

chord([pitch(3) pitch(7) pitch(0)])

chord([pitch(7) pitch(5) pitch(9)])])

sequence([pitch(1) pitch(1)])

chord([sequence(nil) sequence([pitch(3)])])])

chord([pitch(1) pitch(9)])])

1}

'==' sequence([chord([sequence([chord([pitch(2) pitch(6) pitch(9)])

chord([pitch(4) pitch(8) pitch(1)])

chord([pitch(8) pitch(6) pitch(10)])])

sequence([pitch(2) pitch(2)])

chord([sequence(nil) sequence([pitch(4)])])])

chord([pitch(2) pitch(10)])])}

{DoneTesting}

Figure 20: Body of tests for problem 27.

24

% $Id: FoldMusicTest.oz,v 1.1 2010/02/17 02:36:37 leavens Exp $

\insert 'FoldMusic.oz'

\insert 'TestingNoStop.oz'

declare
fun {HighestNote Song}

fun {HighestInList LOM} % TYPE: <fun {$ <List Music>}: <Int>>

{FoldR {Map LOM HighestNote} Max ~1}

end
in

{FoldMusic Song fun {$ N} N end HighestInList HighestInList}

end
fun {Transpose Song Delta}

fun {TransposeList LOM} % TYPE: <fun {$ <List Music>}: <List Music>>

{Map LOM fun {$ M} {Transpose M Delta} end}
end

in
{FoldMusic Song

fun {$ N} pitch(N+Delta) end
fun {$ Lst} chord({TransposeList Lst}) end
fun {$ Lst} sequence({TransposeList Lst}) end}

end
\insert 'HighestNoteBodyTest.oz'

\insert 'TransposeBodyTest.oz'

Figure 21: Testing for Problem 28 on page 21.

25

29. (30 points) [UseModels] [Concepts]

A potentially infinite bag (or PIBag) can be described by a “characteristic function” of type
<fun {$ <Value>}: <Int> >, that determines the multiplicity of each value in the bag. For example, the
function M such that

M(x) = x − 7, if x is an number and x > 7

is the characteristic function for a potentially infinite bag containing all numbers strictly greater than 7, with 8
having multiplicity 1, 9 having multiplicity 2, 10 occuring 3 times, etc. Allowing the user to construct such a
potentially infinite bag from a characteristic function gives them the power to construct potentially infinite bags
like the one above, which contains an infinite number of elements. (In this example, the bag contains i− 7 copies
of all numbers i that are strictly greater than 7.)

Your problem is to implement the following operations for the type PIBag of potentially infinite bags. (Hint:
think about using a function type as the representation of PIBags.)

1. The function PIBagSuchThat takes a characteristic function, F and returns a potentially infinite bag such
that each value X is in the resulting PIBag with multiplicity {F X}.

2. The function PIBagUnion takes two PIBags, with characteristic functions F and G, and returns a PIBag
such that each value X is in the resulting PIBag with multiplicity {F X} + {G X}.

3. The function PIBagIntersect takes two PIBags, with characteristic functions F and G, and returns a
PIBag such that each value X is in the resulting PIBag with a multiplicity that is the minimum of {F X}
and {G X}.

4. The function PIBagMultiplicity takes a PIBag B and a value X and returns an Int that tells how many
times X is in B.

5. The function PIBagAdd takes a PIBag B, a value X , and a multiplicity N , and returns a PIBag that contains
everything in B plus N more occurrences of X .

Note (hint, hint) that the equations in Figure 22 must hold, for all functions F and G, elements X and Y of
appropriate types, and 〈Int〉s N.

{PIBagMultiplicity {PIBagUnion {PIBagSuchThat F} {PIBagSuchThat G}} X}
== {F X} + {G X}

{PIBagMultiplicity {PIBagIntersect {PIBagSuchThat F} {PIBagSuchThat G}} X}
== {Min {F X} {G X}}

{PIBagMultiplicity {PIBagSuchThat F} X} == {F X}
{PIBagMultiplicity {PIBagAdd {PIBagSuchThat F} Y N} X}

== if X == Y then {F Y} + N else {F X} end

Figure 22: Equations that give hints for problem 29.

As examples, consider the tests in Figure 23 on the following page.

26

% $Id: PIBagTest.oz,v 1.4 2011/10/06 02:14:35 leavens Exp $

\insert 'PIBag.oz'

\insert 'TestingNoStop.oz'

{StartTesting 'PIBagTest $Revision: 1.4 $'}

declare
fun {Cokes X} if X == coke then 6 else 0 end end
fun {Beers X} if X == beer then 12 else 0 end end
fun {GTMaker Y} fun {$ X} if {IsInt X} andthen X > Y then X else 0 end end end
GT5 = {GTMaker 5}

GT7 = {GTMaker 7}

{Test {PIBagMultiplicity {PIBagSuchThat Cokes} coke} '==' 6}

{Test {PIBagMultiplicity {PIBagSuchThat Cokes} pepsi} '==' 0}

{Test {PIBagMultiplicity {PIBagAdd {PIBagSuchThat Cokes} pepsi 2} coke} '==' 6}

{Test {PIBagMultiplicity {PIBagAdd {PIBagSuchThat Cokes} pepsi 2} pepsi} '==' 2}

{Test {PIBagMultiplicity {PIBagAdd {PIBagSuchThat Cokes} pepsi 2} sprite} '==' 0}

{Test {PIBagMultiplicity {PIBagUnion {PIBagSuchThat Cokes} {PIBagSuchThat Beers}}

pepsi} '==' 0}

{Test {PIBagMultiplicity {PIBagUnion {PIBagSuchThat Cokes} {PIBagSuchThat Beers}}

coke} '==' 6}

{Test {PIBagMultiplicity {PIBagUnion {PIBagSuchThat Cokes} {PIBagSuchThat Beers}}

beer} '==' 12}

{Test {PIBagMultiplicity

{PIBagIntersect {PIBagSuchThat Cokes} {PIBagSuchThat Beers}}

coke} '==' 0}

{Test {PIBagMultiplicity {PIBagSuchThat GT5} coke} '==' 0}

{Test {PIBagMultiplicity {PIBagSuchThat GT7} coke} '==' 0}

{Test {PIBagMultiplicity {PIBagSuchThat GT7} 8} '==' 8}

{Test {PIBagMultiplicity {PIBagSuchThat GT7} 7} '==' 0}

{Test {PIBagMultiplicity {PIBagSuchThat GT7} 6} '==' 0}

{Test {PIBagMultiplicity {PIBagSuchThat GT7} 999092384084184} '==' 999092384084184}

{Test {PIBagMultiplicity {PIBagSuchThat GT5} 999092384084184} '==' 999092384084184}

{Test {PIBagMultiplicity {PIBagUnion {PIBagSuchThat GT5} {PIBagSuchThat GT7}} 6}

'==' 6}

{Test {PIBagMultiplicity {PIBagUnion {PIBagSuchThat GT5} {PIBagSuchThat GT5}} 6}

'==' 12}

{Test {PIBagMultiplicity {PIBagIntersect {PIBagSuchThat GT5} {PIBagSuchThat GT7}} 6}

'==' 0}

{Test {PIBagMultiplicity {PIBagAdd {PIBagSuchThat GT5} 10 3} 10} '==' 13}

{DoneTesting}

Figure 23: Example tests for problem 29.

27

30. (25 points) [Concepts] [UseModels]

Consider the following data grammars.

<Exp> ::= boolLit(<Bool>)
| intLit(<Int>)
| charLit(<Char>)
| subExp(<Exp> <Exp>)
| equalExp(<Exp> <Exp>)
| andExp(<Exp> <Exp>)
| ifExp(<Exp> <Exp> <Exp>)

<OType> ::= obool | oint | ochar | owrong

In the grammar for expressions, <Exp>, the boolLit, intLit, and charLit records represent Boolean, Integer,
and Character literals (respectively). As the grammar says, you can assume that inside boolLit is a <Bool>, and
inside an intLit is an <Int>, and similarly for charLit. Records of the form subExp(E1 E2) represent
subtractions (E1 − E2). Records of the form equalExp(E1 E2) represent equality tests, i.e., E1 == E2. Records
of the form andExp(E1 E2) represent conjunctions, i.e., E1 andthen E2. Records of the form ifExp(E1 E2 E3)
represent if-then-else expressions, i.e., if E1 then E2 else E3 end.

In the grammar for types, <OType>, the type obool is the type of the Booleans, oint is the type of the integers,
and ochar is the type of the characters. The type owrong is used for the type of expressions that contain a type
error.

Your task is to write a function

TypeOf: <fun {$ <Exp>}: OType>

that takes an <Exp> and returns its OType. The file TypeOfTest.oz (see Figure 24 on the next page) gives some
examples and should be used for testing.

Your function should incorporate a reasonable notion of what the exact type rules are, but your rules should agree
with our test cases in Figure 24 on the following page. (Exactly what “reasonable” is left up to you; explain any
decisions you feel the need to make. However, note that this is static type checking, you will not be executing the
programs and should not look at the values of subexpressions when deciding on types.)

The answer should not suppress owrong in any subexpression; that is, if a subexpression is wrong, the whole
expression that contains it is wrong.

Points
This homework’s total points: 391. Total extra credit points: 0.

References
[DKS06] Denys Duchier, Leif Kornstaedt, and Christian Schulte. The Oz Base Environment. mozart-oz.org, June

2006. Version 1.3.2.

[Lea07] Gary T. Leavens. Following the grammar. Technical Report CS-TR-07-10b, School of EECS, University
of Central Florida, Orlando, FL, 32816-2362, November 2007.

[VH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming. The MIT
Press, Cambridge, Mass., 2004.

28

% $Id: TypeOfTest.oz,v 1.5 2011/10/06 02:14:35 leavens Exp $

\insert 'TypeOf.oz'

\insert 'TestingNoStop.oz'

{StartTesting 'TypeOfTest $Revision: 1.5 $'}

{Test {TypeOf boolLit(true)} '==' obool}

{Test {TypeOf boolLit(false)} '==' obool}

{Test {TypeOf intLit(4020)} '==' oint}

{Test {TypeOf charLit(&c)} '==' ochar}

{Test {TypeOf subExp(intLit(3) intLit(4))} '==' oint}

{Test {TypeOf subExp(subExp(intLit(3) intLit(4))

subExp(intLit(7) intLit(8)))} '==' oint}

{Test {TypeOf subExp(charLit(&a) intLit(4))} '==' owrong}

{Test {TypeOf subExp(intLit(4) charLit(&a))} '==' owrong}

{Test {TypeOf subExp(intLit(4) boolLit(true))} '==' owrong}

{Test {TypeOf subExp(boolLit(true) intLit(4))} '==' owrong}

{Test {TypeOf equalExp(intLit(3) intLit(4))} '==' obool}

{Test {TypeOf equalExp(charLit(&a) intLit(&b))} '==' owrong}

{Test {TypeOf equalExp(boolLit(true) boolLit(false))} '==' obool}

{Test {TypeOf equalExp(subExp(intLit(5) intLit(3)) intLit(4))} '==' obool}

{Test {TypeOf andExp(boolLit(true) boolLit(false))} '==' obool}

{Test {TypeOf andExp(ifExp(boolLit(true) boolLit(false) boolLit(true))
boolLit(false))} '==' obool}

{Test {TypeOf ifExp(boolLit(true) intLit(5) intLit(3))} '==' oint}

{Test {TypeOf ifExp(boolLit(false) boolLit(false) intLit(3))} '==' owrong}

{Test {TypeOf ifExp(boolLit(true) intLit(7) charLit(&c))} '==' owrong}

{Test {TypeOf equalExp(subExp(charLit(&a) intLit(3))

intLit(4))} '==' owrong}

{Test {TypeOf equalExp(ifExp(subExp(charLit(&a) intLit(&b))

boolLit(false)
intLit(4))

ifExp(boolLit(true) intLit(3) intLit(4)))}

'==' owrong}

{Test {TypeOf ifExp(boolLit(true) intLit(4) intLit(5))} '==' oint}

{Test {TypeOf ifExp(boolLit(true) intLit(4) boolLit(true))} '==' owrong}

{Test {TypeOf ifExp(intLit(3) intLit(4) intLit(5))} '==' owrong}

{Test {TypeOf equalExp(subExp(charLit(&a) intLit(3))

ifExp(intLit(0) intLit(4) boolLit(true)))}
'==' owrong}

{Test {TypeOf equalExp(subExp(charLit(&a) charLit(&b))

ifExp(boolLit(false)
ifExp(andExp(boolLit(true) boolLit(false))

intLit(4)

boolLit(false))
boolLit(true)))}

'==' owrong}

{Test {TypeOf equalExp(equalExp(subExp(intLit(7) intLit(6))

subExp(intLit(5) intLit(4)))

ifExp(equalExp(intLit(3) intLit(3))

ifExp(boolLit(true)
boolLit(true)
boolLit(false))

equalExp(charLit(&y) charLit(&y))))}

'==' obool}

{DoneTesting}

Figure 24: Examples for problem 30.

