
COP 4020 — Programming Languages I February 6, 2015

Homework 2: Functional Programming in Haskell
See Webcourses and the syllabus for due dates.

Purpose
In this homework you will learn basic techniques of recursive programming over various types of
(recursively-structured) data [UseModels] [Concepts]. Many of the problems exhibit polymorphism
[UseModels] [Concepts]. The problems as a whole illustrate how functional languages work without hidden
effects [EvaluateModels].

Directions
Answers to English questions should be in your own words; don’t just quote text from the textbook.
We will take some points off for: code with the wrong type or wrong name, duplicated code, code with extra
unnecessary cases, or code that is excessively hard to follow. You should always assume that the inputs
given to each function will be well-typed, thus your code should not have extra cases for inputs that are not
of the proper type. (Assume that any human inputs are error checked before they reach your code.) Make
sure your code has the specified type by including the given type declaration with your code. Avoid
duplicating code by using helping functions, library functions (when not prohibited in the problems), or by
using syntactic sugars and local definitions (using let and where). It is a good idea to check your code for
these problems before submitting.
Since the purpose of this homework is to ensure skills in functional programming, we suggest that you work
individually. (However, per the course’s grading policy you can work in a group if you wish, provided that
carefully follow the policy on cooperation described in the course’s grading policy.)
Don’t hesitate to contact the staff if you are stuck at some point.

What to Turn In
For each problem that requires code, turn in (on Webcourses) your code and output of testing with our test
cases. Please upload code as a plain (text) file with the name given in the problem or testing file and with the
suffix .hs or .lhs (that is, do not give us a Word document or a PDF file for the code). Also paste the output
from our tests into the Comment box for that “assignment”. For English answers, please paste your answer
into the assignment as a “text answer” in the problem’s “assignment” on Webcourses. For a problem with a
mix of code and English, follow both of the above.
For all Haskell programs, you must run your code with GHC. See the course’s Running Haskell page for
some help and pointers on getting GHC installed and running. Your code should compile properly (and thus
type check); if it doesn’t, then you probably should keep working on it. Email the staff with your code file if
you need help getting it to compile or have trouble understanding error messages. If you don’t have time to
get your code to compile, at least tell us that you didn’t get it to compile in your submission.
You are encouraged to use any helping functions you wish, and to use Haskell library functions, unless the
problem specifically prohibits that.

What to Read
Besides reading chapters 1-7 of the recommended textbook on Haskell [Tho11], you may want to read some
of the Haskell tutorials. Use the Haskell 2010 Report as a guide to the details of Haskell.
Also read “Following the Grammar with Haskell” [Lea13] and follow its suggestions for planning and
organizing your code. You may also want to read a tutorial on the concepts of functional programming

https://webcourses.ucf.edu/
http://www.eecs.ucf.edu/~leavens/COP4020/syllabus.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutUseModels
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutUseModels
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutEvaluateModels
http://www.eecs.ucf.edu/~leavens/COP4020/grading_policy.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/grading_policy.shtml#coop
http://www.eecs.ucf.edu/~leavens/COP4020/contact.shtml
https://webcourses.ucf.edu/
http://www.eecs.ucf.edu/~leavens/COP4020/running_haskell.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/contact.shtml
http://www.haskellcraft.com/craft3e/Home.html
http://www.haskell.org/haskellwiki/Tutorials
http://www.haskell.org/haskellwiki/Language_and_library_specification#The_Haskell_2010_report
http://www.eecs.ucf.edu/~leavens/COP4020/docs/follow-grammar-haskell.pdf

2

languages, such as Hudak’s computing survey article mentioned in the syllabus. See also the course code
examples page (and the course resources page).

Problems

Functions on Tuples
1. (5 points) [UseModels] The function you are to write in Haskell is

average3 :: (Double,Double,Double) -> Double

which takes a triple of Doubles, (x,y,z), and returns a Double that is the average (i.e., the arithmetic
mean) of x, y, and z. The following are examples, written using the Testing and FloatTesting
modules which are included in the hw2-tests.zip file.

main = dotests "Average3Tests $Revision: 1.1 $" tests

tests :: [TestCase Double]
tests = [withinTest (average3 (0.0,0.0,0.0)) "~=~" 0.0

,withinTest (average3 (0.0,1.0,2.0)) "~=~" 1.0

,withinTest (average3 (75.0,100.0,50.0)) "~=~" 75.0

,withinTest (average3 (-30.2,10.1,55.7)) "~=~" 11.866666666666667

,withinTest (average3 (62.4,98.6,212.532)) "~=~" 124.51066666666668

,withinTest (average3 (10.0,100.0,3.14)) "~=~" 37.71333333333333

]

To run our tests, use the Average3Tests.hs file. To make that work, you have to put your code in a
module Average3, which will need to be in a file named Average3.hs (or Average3.lhs), in the same
directory as Average3Tests.hs. Your file Average3.hs should thus start as follows.

module Average3 where
average3 :: (Double,Double,Double) -> Double

Then run our tests by running the main function in Average3Tests.hs. Our tests are written using the
Testing.lhs and FloatTesting.hs files, which are included in hw2-tests.zip.

-- $Id: Average3Tests.hs,v 1.1 2015/01/21 14:52:27 leavens Exp leavens $

module Average3Tests where
import Average3

import Testing

import FloatTesting

main = dotests "Average3Tests $Revision: 1.1 $" tests

tests :: [TestCase Double]
tests = [withinTest (average3 (0.0,0.0,0.0)) "~=~" 0.0

,withinTest (average3 (0.0,1.0,2.0)) "~=~" 1.0

,withinTest (average3 (75.0,100.0,50.0)) "~=~" 75.0

,withinTest (average3 (-30.2,10.1,55.7)) "~=~" 11.866666666666667

,withinTest (average3 (62.4,98.6,212.532)) "~=~" 124.51066666666668

,withinTest (average3 (10.0,100.0,3.14)) "~=~" 37.71333333333333

]

Figure 1: Tests for problem 1.

As specified on the first page of this homework, turn in both your code file and the output of your
testing. (The code file should be uploaded to Webcourses, and the test output should be pasted in to the
Comments box for that assignment.)

http://www.eecs.ucf.edu/~leavens/COP4020/syllabus.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/examples/index.html
http://www.eecs.ucf.edu/~leavens/COP4020/examples/index.html
http://www.eecs.ucf.edu/~leavens/COP4020/resources.shtml

3

Recursion over Flat Lists

These problems are intended to give you an idea of how to write recursions by following the grammar for
flat lists [Lea13].

2. [Concepts]

(a) (5 points) In Haskell, which of the following is equivalent to the list [3,5,3]?

1. (3,5,3)

2. 3:(5:3)

3. (3:5):3

4. (((3:5):3):[])

5. 3:(5:(3:[]))

(b) (10 points) Suppose that ohno is the list ['o', 'h', 'n', 'o'] and that yikes is the list
"yikes". For each of the following, say whether it is legal or illegal in Haskell, and if it is illegal,
say why it is illegal.

1. ohno:'y'

2. ohno ++ yikes

3. ohno:yikes

4. ['o']:yikes

5. 'o':yikes

(c) (5 points) Haskell has built in functions head and tail defined as follows.

head :: [a] -> a
head (x:_) = x
head [] = error "Prelude.head: empty list"

tail :: [a] -> [a]
tail (_:xs) = xs
tail [] = error "Prelude.tail: empty list"

For example, head [1 ..] equals 1 and tail [1 ..] equals [2 ..]. Consider the following
function.

rip lst =

let back = tail lst

in let front = head lst

in (lst, front:back)

What is the result of the call rip [3,4,7,5,8]?
(We suggest that you think about it first, and only use the Haskell system to check your answer.)

4

3. [UseModels] This problem will have you write a solution in 2 ways. The problem is to write a function
that takes a list of Integers and returns a list that is just like the argument but in which every element is
10 greater than the corresponding element in the argument list.

(a) (5 points) Write the function

add10_list_comp :: [Integer] -> [Integer]

that solves the above problem by using a list comprehension.

(b) (5 points) Write the function

add10_list_rec :: [Integer] -> [Integer]

that solves the above problem by writing out the recursion yourself; that is, without using a list
comprehension and without using map or any other higher-order library function.

There are test cases contained in Add10ListTests.hs, which is shown in Figure 2.

-- $Id: Add10ListTests.hs,v 1.1 2015/01/21 14:06:28 leavens Exp leavens $

module Add10ListTests where
import Testing

import Add10List -- you have to put your solutions in module Add10List

version = "Add10ListTests $Revision: 1.1 $"

recursive_tests = (tests add10_list_rec)

comprehension_tests = (tests add10_list_comp)

-- do main to run our tests

main :: IO()
main = do startTesting version

errs_comp <- run_test_list 0 comprehension_tests

total_errs <- run_test_list errs_comp recursive_tests

doneTesting total_errs

-- do test_comprehension to test just add10_list_comp

test_comprehension :: IO()
test_comprehension = dotests version comprehension_tests

-- do test_recursive to test just add10_list_rec

test_recursive :: IO()
test_recursive = dotests version recursive_tests

tests :: ([Integer] -> [Integer]) -> [TestCase [Integer]]
tests f =

[(eqTest (f []) "==" [])

,(eqTest (f (1:[])) "==" (11:[]))

,(eqTest (f (3:1:[])) "==" (13:11:[]))

,(eqTest (f [1,5,7,1,7]) "==" [11,15,17,11,17])

,(eqTest (f [7 .. 21]) "==" [17 .. 31])

,(eqTest (f [8,4,-2,3,1,10000000,10])

"==" [18,14,8,13,11,10000010,20])

]

Figure 2: Tests for problem 3. In the definition of tests f stands for one of the two functions you are to
write.

To run our tests, use the Add10ListTests.hs file. To make that work, you have to put your code in a

5

module Add10List, which will need to be in a file named Add10List.hs (or Add10List.lhs), in the
same directory as Add10ListTests.hs. Your file Add10List.hs should thus start as follows.

module Add10List where
add10_list_rec :: [Integer] -> [Integer]
add10_list_comp :: [Integer] -> [Integer]

Then run our tests by running the main function in Add10ListTests.hs.

As specified on the first page of this homework, turn in both your code file and the output of your
testing. (The code file should be uploaded to Webcourses, and the test output should be pasted in to the
Comments box for that assignment.)

4. (10 points) [UseModels] In Haskell, write the function:

cubeOdds :: [Integer] -> [Integer]

that takes a list of Integers, lst, and returns a list of Integers that is just like lst, except that each odd
element of lst is replaced by the cube of that element. In your solution, you might find it helpful to use
the built-in predicate odd.

There are examples in Figure 3.

-- $Id: CubeOddsTests.hs,v 1.1 2015/01/21 14:16:07 leavens Exp leavens $

module CubeOddsTests where
import CubeOdds

import Testing

main = dotests "CubeOddsTests $Revision: 1.1 $" tests

tests :: [TestCase [Integer]]
tests = [eqTest (cubeOdds []) "==" []

,eqTest (cubeOdds [3]) "==" [27]

,eqTest (cubeOdds [4]) "==" [4]

,eqTest (cubeOdds [4,3]) "==" [4,27]

,eqTest (cubeOdds [1,2,3,4,5,6]) "==" [1,2,27,4,125,6]

,eqTest (cubeOdds [3,10,3,5,600,0,-2,-1,-3])

"==" [27,10,27,125,600,0,-2,-1,-27]

]

Figure 3: Tests for problem 4.

5. (10 points) [UseModels] Write the function

deleteNth :: (Eq a) => Int -> a -> [a] -> [a]

that takes a positive Int, n, an element, toDelete, of some equality type a, and a list, as, of type [a],
and returns a list that is just like as, but which does not contain the nth occurrence (in as) of the element
toDelete.

Your solution must not use any Haskell library functions. You may assume that n is strictly greater than
0.

There are test cases contained in DeleteNthTests.hs, which is shown in Figure 4 on the following
page.

As always, after writing your code, run our tests, and turn in your solution and the output of our tests as
specified on the first page of this homework.

6. (5 points) [Concepts] Is it possible to use a list comprehension to solve problem 5 in an easy, direct
way? Briefly explain.

6

-- $Id: DeleteNthTests.hs,v 1.1 2015/01/21 16:33:59 leavens Exp $

module DeleteNthTests where
import Testing

import DeleteNth

-- do main to run our tests

main :: IO()
main = dotests "DeleteNthTests $Revision: 1.1 $" tests

tests :: [TestCase [Int]]
tests =

[(eqTest (deleteNth 1 3 []) "==" [])

,(eqTest (deleteNth 1 3 (1:[])) "==" (1:[]))

,(eqTest (deleteNth 1 1 (1:[])) "==" [])

,(eqTest (deleteNth 1 3 (3:1:3:[])) "==" (1:3:[]))

,(eqTest (deleteNth 2 3 (3:1:3:[])) "==" (3:1:[]))

,(eqTest (deleteNth 3 3 (3:1:3:[])) "==" (3:1:3:[]))

,(eqTest (deleteNth 1 3 (3:9:3:7:3:[])) "==" (9:3:7:3:[]))

,(eqTest (deleteNth 3 3 (3:9:3:7:3:[])) "==" (3:9:3:7:[]))

,(eqTest (deleteNth 2 1 (3:1:5:1:4:[])) "==" (3:1:5:4:[]))

,(eqTest (deleteNth 1 7 (3:1:[])) "==" (3:1:[]))

,(eqTest (deleteNth 1 7 [1,5,7,1,7]) "==" [1,5,1,7])

,(eqTest (deleteNth 2 7 [1,5,7,1,7]) "==" [1,5,7,1])

,(eqTest (deleteNth 4 9 [9,2,9,3,9,10,9,5,6]) "==" [9,2,9,3,9,10,5,6])

,(eqTest (deleteNth 2 8 [8,8,8,8,8,8]) "==" [8,8,8,8,8])

,(eqTest (deleteNth 17 8 [8,8,8,8,8,8]) "==" [8,8,8,8,8,8])

,(eqTest (deleteNth 18 99 [8,8,8,8,8,8]) "==" [8,8,8,8,8,8])

,(eqTest (deleteNth 3 8 [8,2,8,4,8,8,8,8,8]) "==" [8,2,8,4,8,8,8,8])

,(eqTest (deleteNth 2 20 ([1 .. 50] ++ (reverse [1 .. 50])))

"==" ([1 .. 50] ++ (reverse ([1 .. 19] ++ [21 .. 50]))))

]

Figure 4: Tests for problem 5.

7

7. [UseModels] Complete the module Vectors found in the file Vectors.hs (provided in the
hw2-tests.zip file), by writing function definitions in the indicated places that implement the
functions: scale, add, and sub. This module represents Vectors by lists of Doubles. The functions you
are to implement are as follows.

(a) (5 points) The function

scale :: Double -> Vector -> Vector

takes a Double y, and a vector, v, and returns a new Vector that is just like v, except that each
coordinate is y times the corresponding coordinate in v.

(b) (5 points) The function

add :: Vector -> Vector -> Vector

takes two vectors and adds them together, so that each coordinate of the result is the sum of the
corresponding coordinates of the argument Vectors. Your code should assume that the two vector
arguments have the same length.

(c) (5 points) The function

dot :: Vector -> Vector -> Double

takes two vectors and computes their dot product (or inner product), which is the sum of the
products of the corresponding elements. Your code should assume that the two vector arguments
have the same length.

There are test cases contained in VectorsTests.hs, which is shown in Figure 5 on the next page.

To run our tests, use the VectorsTests.hs file. To make that work, edit your code into the provided file
Vectors.hs. Our tests use the FloatTesting module from hw2-tests.zip.

You can use test_scale, test_add, or test_dot to test individual functions. Then run all our tests by
running the main function in VectorsTests.hs, and turn in both your code file and the output of our
main test. (As usual, upload your code file to Webcourses, and paste the test output into the Comments
box for the assignment corresponding to this problem.)

8

-- $Id: VectorsTests.hs,v 1.1 2015/01/21 18:43:36 leavens Exp $

module VectorsTests where
import Testing

import FloatTesting

import Vectors -- you have to put your solutions in module Vectors

version = "VectorsTests $Revision: 1.1 $"

-- do main to run our tests

main :: IO()
main = do startTesting version

errs_scale <- run_test_list 0 scale_tests

errs_add <- run_test_list errs_scale add_tests

total_errs <- run_test_list errs_add dot_tests

doneTesting total_errs

-- The following will test one function each

test_scale, test_add, test_dot :: IO()
test_scale = dotests "Testing scale $Revision: 1.1 $" scale_tests

test_add = dotests "Testing add $Revision: 1.1 $" add_tests

test_dot = dotests "Testing dot $Revision: 1.1 $" dot_tests

scale_tests :: [TestCase Vector]

scale_tests =

[(vecWithin (scale 3.14 []) "~=~" [])

,(vecWithin (scale 10.0 [1.0, 2.0, 4.0]) "~=~" [10.0, 20.0, 40.0])

,(vecWithin (scale 5.3 [1.0 .. 10.0]) "~=~" [5.3, 10.6 .. 53.0])

,(vecWithin (scale 2.0 [1.0 .. 100.0]) "~=~" [2.0, 4.0 .. 200.0])

,(vecWithin (scale 3.5 [4.0]) "~=~" [3.5*4.0])

]

add_tests :: [TestCase Vector]

add_tests =

[(vecWithin ([] `add` []) "~=~" [])

,(vecWithin ([0.0, 100.0, 200.0] `add` [1.0, 2.0, 4.0])

"~=~" [1.0, 102.0, 204.0])

,(vecWithin ([1.0 .. 10.0] `add` [100.0 .. 109.0])

"~=~" [101.0, 103.0 .. 119.0])

,(vecWithin ([1.0 .. 10.0] `add` [11.0 .. 20.0])

"~=~" ([12.0, 14.0 .. 30.0]))

,(vecWithin ([3.5] `add` [10.0]) "~=~" [13.5])

,(vecWithin ([3.5,6.2,8.2,5.99] `add` [7.2,9.6,13.1,15.5]) "~=~"

[10.7,15.8,21.299999999999997,21.490000000000002])

,(vecWithin ([-1.0] `add` [40.20]) "~=~" [39.20])

]

dot_tests :: [TestCase Double]
dot_tests =

[(withinTest ([] `dot` []) "~=~" 0.0)

,(withinTest ([0.0, 100.0, 200.0] `dot` [1.0, 2.0, 4.0])

"~=~" 1000.0)

,(withinTest ([1.0 .. 10.0] `dot` [100.0 .. 109.0])

"~=~" 5830.0)

,(withinTest ([1.0 .. 10.0] `dot` [11.0 .. 20.0])

"~=~" 935.0)

,(withinTest ([3.5] `dot` [4.7]) "~=~" (3.5*4.7))

,(withinTest ([3.5,1.0,10.1,599.25] `dot` [7.2,9.6,13.1,15.5]) "~=~" 9455.485)

,(withinTest ([-1.0] `dot` [40.20]) "~=~" (-40.2))

]

Figure 5: Tests for problem 7.

9

8. [UseModels] This problem will have you write two functions that deal with the application of binary
relations to keys (i.e., the look up of the values associated with a given key). In this problem binary
relations are represented as lists of pairs, as described in the file BinaryRelation.hs:

-- $Id: BinaryRelation.hs,v 1.2 2015/01/21 20:31:14 leavens Exp leavens $

module BinaryRelation where
-- Binary relations are represented as lists of pairs

type BinaryRelation a b = [(a,b)]

In a BinaryRelation, the first part of a pair is called a “key” and the second part of a pair is called a
“value.”

Your code for the following two functions should go in a module named ApplyToList that imports the
BinaryRelation module. Thus it should start as follows.

module ApplyToList where
import BinaryRelation

The functions you are to write are the following.

(a) (10 points) Using a list comprehension, write the function

applyRel :: (Eq k) => k -> (BinaryRelation k v) -> [v]

When given a key value, ky, of some equality type k, and a BinaryRelation pairs, of type
(BinaryRelation k v) the result is a list of values (of type v) that are the values from all the pairs
whose key is ky. Note that values in the result appear in the order in which they appear in pairs.

(b) (10 points) Using recursion (that is, without using a list comprehension or library functions), write
the function

applyToList :: (Eq k) => [k] -> (BinaryRelation k v) -> [v]

When given a list of keys, keys, of some equality type k, and a BinaryRelation, pairs, the result is
a list of values from all the pairs in the relation pairs whose key is one of the keys in keys. Note
that the order of the answer is such that all the values associated with the first key in keys appear
before any of the values associated with a later key, and similarly the values associated with other
keys appear before later keys in keys. (Hint: You may use applyRel in your solution for this
problem.)

There are test cases contained in ApplyToListTests.hs, which is shown in Figure 6 on the following
page. That file imports Relations.hs, which is shown in Figure 7 on page 11.

To run our tests, use the ApplyToListTests.hs file. To make that work, you have to put your code in a
module ApplyToList.

As specified on the first page of this homework, turn in both your code file and the output of your
testing. (The code file should be uploaded to Webcourses, and the test output should be pasted in to the
Comments box.)

10

-- $Id: ApplyToListTests.hs,v 1.1 2015/01/21 20:31:14 leavens Exp leavens $

module ApplyToListTests where
import Testing

import BinaryRelation

import Relations -- some test inputs

import ApplyToList -- you have to put your solutions in this module

version = "ApplyToListTests $Revision: 1.1 $"

-- do main to run our tests

main :: IO()
main = do startTesting version

errs_wk <- run_test_list 0 applyRel_tests

total_errs <- run_test_list errs_wk applyToList_tests

doneTesting total_errs

-- do test_applyRel to test just applyRel

test_applyRel :: IO()
test_applyRel = dotests ("deleteWithValue " ++ version) applyRel_tests

-- do test_applyToList to test just applyToList

test_applyToList :: IO()
test_applyToList = dotests ("applyToList " ++ version) applyToList_tests

applyRel_tests :: [TestCase [String]]
applyRel_tests =

[(eqTest (applyRel "Timbuktu" []) "==" [])

,(eqTest (applyRel "Ames" us_cities) "==" ["Iowa"])

,(eqTest (applyRel "Chicago" us_cities) "==" ["Illinois"])

,(eqTest (applyRel "bar" bar_stuff)

"==" ["mitzva", "stool", "tender", "keeper"])

,(eqTest (applyRel "salad" bar_stuff) "==" ["bar"])

,(eqTest (applyRel "foo" bar_stuff) "==" [])

]

applyToList_tests :: [TestCase [String]]
applyToList_tests =

[(eqTest (applyToList ([]::[String]) ([]::(BinaryRelation String String))) "==" [])

,(eqTest (applyToList ["foo"] []) "==" [])

,(eqTest (applyToList ["foo","bar"] bar_stuff)

"==" ["mitzva", "stool", "tender", "keeper"])

,(eqTest (applyToList ["salad","bar"] bar_stuff)

"==" ["bar", "mitzva", "stool", "tender", "keeper"])

,(eqTest (applyToList ["Beijing", "Guangzhou", "Shenzhen", "Tokyo"] city_country)

"==" ["China", "China", "China", "Japan"])

,(eqTest (applyToList ["Buenos Aires", "Delhi", "Osaka"] city_country)

"==" ["Argentina", "India", "Japan"])

]

Figure 6: Tests for problem 8.

11

-- $Id: Relations.hs,v 1.2 2013/08/21 21:11:27 leavens Exp $

module Relations where
import BinaryRelation

bar_stuff :: BinaryRelation String String
us_cities :: BinaryRelation String String
city_country :: BinaryRelation String String
city_population :: BinaryRelation String Int
city_areakm2 :: BinaryRelation String Int
country_population :: BinaryRelation String Int
bar_stuff = [("bar","mitzva"),("bar","stool"), ("bar","tender"),("salad","bar"),("bar","keeper")]

us_cities = [("Chicago","Illinois"),("Miami","Florida"),("Ames","Iowa")

,("Orlando","Florida"),("Des Moines","Iowa")]

-- The following data are from Wikipedia.org, accessed August 19, 2013

city_country =

[("Beijing","China"),("Buenos Aires","Argentina"),("Cairo","Egypt"),("Delhi","India")

,("Dhaka","Bangladesh"),("Guangzhou","China"),("Istanbul","Turkey"),("Jakarta","Indonesia")

,("Karachi","Pakistan"),("Kinshasa","Democratic Republic of the Congo"),("Kolkata","India")

,("Lagos","Nigeria"),("Lima","Peru"),("London","United Kingdom"),("Los Angeles","United States")

,("Manila","Philippines"),("Mexico City","Mexico"),("Moscow","Russia"),("Mumbai","India")

,("New York City","United States"),("Osaka","Japan"),("Rio de Janeiro","Brazil")

,("Sao Paulo","Brazil"),("Seoul","South Korea"),("Shanghai","China"),("Shenzhen","China")

,("Tehran","Iran"),("Tianjin","China"),("Tokyo","Japan")]

city_population =

[("Tokyo", 37239000),("Jakarta", 26746000),("Seoul", 22868000)

,("Delhi", 22826000),("Shanghai", 21766000),("Manila", 21241000)

,("Karachi", 20877000),("New York City", 20673000),("Sao Paulo", 20568000)

,("Mexico City", 20032000),("Beijing", 18241000),("Guangzhou", 17681000)

,("Mumbai", 17307000),("Osaka", 17175000),("Moscow", 15788000)

,("Cairo", 15071000),("Los Angeles", 15067000),("Kolkata", 14399000)

,("Buenos Aires", 13776000),("Tehran", 13309000),("Istanbul", 12506000)

,("Lagos", 12090000),("Rio", 10183000),("London", 9576000)

,("Lima", 9400000),("Kinshasa", 9387000),("Tianjin", 9277000)

,("Chennai", 9182000),("Chicago", 9104000),("Bengaluru", 9044000)

,("Bogota", 9009000)]

city_areakm2 = -- area is measured in square km

[("Tokyo", 8547) ,("Jakarta", 2784) ,("Seoul", 2163)

,("Delhi", 1943) ,("Shanghai", 3497) ,("Manila", 1437)

,("Karachi", 803) ,("New York City", 11642) ,("Sao Paulo", 3173)

,("Mexico City", 2046) ,("Beijing", 3497) ,("Guangzhou", 3173)

,("Mumbai", 546) ,("Osaka", 3212) ,("Moscow", 4403)

,("Cairo", 1658) ,("Los Angeles", 6299) ,("Kolkata", 1204)

,("Bangkok", 2331) ,("Dhaka", 324) ,("Buenos Aires", 2642)

,("Tehran", 1360) ,("Istanbul", 1347) ,("Shenzhen", 1748)

,("Lagos", 907) ,("Rio de Janeiro", 2020) ,("Paris", 2845)

,("Nagoya", 3820) ,("London", 1623) ,("Lima", 648)

,("Kinshasa", 583) ,("Tianjin", 1684) ,("Chennai", 842)

,("Chicago", 6856) ,("Bengaluru", 738) ,("Bogota", 414)]

country_population = -- from Wikipedia.org access August 21, 2013

[("China",1359470000),("India",1232830000),("United States",316497000),("Indonesia",237641326)

,("Brazil",193946886),("Pakistan",184013000),("Nigeria",173615000),("Bangladesh",152518015)

,("Russia",143400000),("Japan",127350000),("Mexico",117409830),("Philippines",98234000)]

Figure 7: Test data for relation problems, the file Relations.hs.

12

9. [UseModels] In this problem you will implement 4 functions that operate on the type
BinaryRelation, which is defined in the file BinaryRelation.hs:

-- $Id: BinaryRelation.hs,v 1.2 2015/01/21 20:31:14 leavens Exp leavens $

module BinaryRelation where
-- Binary relations are represented as lists of pairs

type BinaryRelation a b = [(a,b)]

Your code should be written in a module named BinaryRelationOps, which should import the
BinaryRelation module, and thus should start as follows.

module BinaryRelationOps where
import BinaryRelation

You are to write the following functions:

(a) (5 points) The function

project1 :: (BinaryRelation a b) -> [a]

projects a binary relation on its first column. That is, it returns a list of all the keys of the relation
(in their original order).

(b) (5 points) The function

project2 :: (BinaryRelation a b) -> [b]

projects a binary relation on its second column. That is, it returns a list of all the values of the
relation (in their original order). (Note that the resulting list may have duplicates even if the
original relation had no duplicate tuples.)

(c) (10 points) The function

select :: ((a,b) -> Bool) -> (BinaryRelation a b) -> (BinaryRelation a b)

takes a predicate and a binary relation and returns a list of all the tuples in the relation that satisfy
the predicate (in their original order). Note that the predicate is a function that takes a single pair as
an argument. For those pairs for which it returns True, the select function should include that pair
in the result.

(d) (10 points) The function

compose :: Eq b => (BinaryRelation a b) -> (BinaryRelation b c)

-> (BinaryRelation a c)

takes two binary relation and returns their relational composition, that is the list of pairs (a, c) such
that there is some pair (a, b) in the first argument binary relation and a pair (b, c) in the second
relation argument.

There are test cases contained in BinaryRelationOpsTests.hs, which is shown in Figure 8 on the
following page. To make this work your code must be in a module named BinaryRelationOps.

As always, after writing your code, run our tests, and turn in your solution and the output of our tests as
specified on the first page of this homework.

13

-- $Id: BinaryRelationOpsTests.hs,v 1.2 2013/08/22 19:59:54 leavens Exp leavens $

module BinaryRelationOpsTests where
import Testing; import BinaryRelation; import Relations

import BinaryRelationOps -- you have to put your solutions in this module

version = "BinaryRelationOpsTests $Revision: 1.2 $"

main :: IO() -- do main to run all our tests

main = do startTesting version

pj1_errs <- run_test_list 0 project1_tests

pj2_errs <- run_test_list pj1_errs project2_tests

select_errs <- run_test_list pj2_errs select_tests

total_errs <- run_test_list select_errs compose_tests

doneTesting total_errs

-- do test_f to test just the function named f

test_project1, test_project2, test_select, test_compose :: IO()
(test_project1, test_project2, test_select, test_compose) =

(runts project1_tests, runts project2_tests, runts select_tests, runts compose_tests)

where runts :: Show a => [TestCase [a]] -> IO() -- prevents type errors

runts = dotests version

project1_tests :: [TestCase [String]]
project1_tests =

[(eqTest (project1 []) "==" [])

,(eqTest (project1 bar_stuff) "==" ["bar", "bar", "bar", "salad", "bar"])

,(eqTest (project1 city_country)

"==" ["Beijing","Buenos Aires","Cairo","Delhi","Dhaka","Guangzhou","Istanbul","Jakarta","Karachi"

,"Kinshasa","Kolkata","Lagos","Lima","London","Los Angeles","Manila","Mexico City","Moscow"

,"Mumbai","New York City","Osaka","Rio de Janeiro","Sao Paulo","Seoul","Shanghai"

,"Shenzhen","Tehran","Tianjin","Tokyo"])]

project2_tests :: [TestCase [String]]
project2_tests =

[(eqTest (project2 []) "==" [])

,(eqTest (project2 bar_stuff) "==" ["mitzva", "stool", "tender", "bar", "keeper"])

,(eqTest (project2 city_country)

"==" ["China","Argentina","Egypt","India","Bangladesh","China","Turkey","Indonesia","Pakistan"

,"Democratic Republic of the Congo","India","Nigeria","Peru","United Kingdom","United States"

,"Philippines","Mexico","Russia","India","United States","Japan","Brazil","Brazil"

,"South Korea","China","China","Iran","China","Japan"])]

select_tests :: [TestCase (BinaryRelation String String)]
select_tests =

[(eqTest (select (\(x,y) -> length x > length y) []) "==" [])

,(eqTest (select (\(x,y) -> length x <= length y) us_cities)

"==" [("Chicago","Illinois"),("Miami","Florida"),("Ames","Iowa"),("Orlando","Florida")])

,(eqTest (select (\(_,y) -> y == "Iowa") us_cities) "==" [("Ames","Iowa"),("Des Moines","Iowa")])

,(eqTest (select (\(x,y) -> x == "Tokyo" && y == "Japan") city_country) "==" [("Tokyo","Japan")])

,(eqTest (select (\(c:city,y:country) -> c == y) city_country)

"==" [("Mexico City","Mexico"),("Seoul","South Korea")])]

compose_tests :: [TestCase (BinaryRelation String Int)]
compose_tests =

[(eqTest (compose [] country_population) "==" [])

,(eqTest (compose bar_stuff [("stool",3),("tender",16)]) "==" [("bar",3),("bar",16)])

,(eqTest (compose city_country country_population)

"==" [("Beijing",1359470000),("Delhi",1232830000),("Dhaka",152518015)

,("Guangzhou",1359470000),("Jakarta",237641326),("Karachi",184013000)

,("Kolkata",1232830000),("Lagos",173615000),("Los Angeles",316497000)

,("Manila",98234000),("Mexico City",117409830),("Moscow",143400000)

,("Mumbai",1232830000),("New York City",316497000),("Osaka",127350000)

,("Rio de Janeiro",193946886),("Sao Paulo",193946886),("Shanghai",1359470000)

,("Shenzhen",1359470000),("Tianjin",1359470000),("Tokyo",127350000)])]

Figure 8: Tests for problem 9. These tests use the relations defined in Relations.hs (see Figure 7 on
page 11).

14

10. (5 points) [Concepts] [UseModels] Consider the data type Amount defined below.

module Amount where
data Amount = Zero | One | Two | Three

In Haskell, write the polymorphic function

rotate :: Amount -> (a,a,a,a) -> (a,a,a,a)

which takes an Amount, amt, and a 4-tuple of elements of some type, (w,x,y,z), and returns a triple
that is circularly rotated to the right by the number of steps indicated by the English word that
corresponds to amt. That is, when amt is Zero, then (w,x,y,z) is returned unchanged; when amt is One,
then (z,w,x,y) is returned; when amt is Two, then (y,z,w,x) is returned; finally when amt is Three,
then (x,y,z,w) is returned. There are examples in Figure 9.

-- $Id: RotateTests.hs,v 1.2 2015/01/21 20:43:49 leavens Exp leavens $

module RotateTests where
import Testing

import Amount

import Rotate -- your code should go in this module

main = dotests "RotateTests $Revision: 1.2 $" tests

tests :: [TestCase Bool]
tests =

[assertTrue ((rotate Zero (1,2,3,4)) == (1,2,3,4))

,assertTrue ((rotate One (1,2,3,4)) == (4,1,2,3))

,assertTrue ((rotate Two (1,2,3,4)) == (3,4,1,2))

,assertTrue ((rotate Three (1,2,3,4)) == (2,3,4,1))

,assertTrue ((rotate Two ("jan","feb","mar","apr")) == ("mar","apr","jan","feb"))

,assertTrue ((rotate Three ("jan","feb","mar","apr")) == ("feb","mar","apr","jan"))

,assertTrue ((rotate Zero (True,False,True,False)) == (True,False,True,False))
,assertTrue ((rotate One (True,False,True,False)) == (False,True,False,True))]

Figure 9: Tests for problem 10.

15

11. (10 points) [UseModels]

Write a function

hep :: [Word] -> [Word]
type Word = String

that takes a list of words (i.e., Strings not containing blanks), txt, and returns a list just like txt but
with the following substitutions made each time they appear as consecutive words in txt:

• you is replaced by u,
• are is replaced by r,
• your is replaced by ur,
• the three words by the way are replaced by the word btw,
• the three words for your information is replaced by the word fyi,
• boyfriend is replaced by bf,
• girlfriend is replaced by gf,
• the three words be right back are replaced by the word brb,
• the three words laughing out loud are replaced by the word lol,
• the two words see you are replaced by the word cya,
• the two words I will are replaced by the word I’ll, and
• great is replaced by gr8.

This list is complete (for this problem).

The examples in Figure 10 are written using the Testing module supplied with the homework. They r
also found in our testing file HepTests.hs which u can get from webcourses (in the zip file attached to
problem 1). Be sure to turn in both ur code and the output of our tests on webcourses.

-- $Id: HepTests.hs,v 1.2 2015/01/21 21:00:49 leavens Exp leavens $

module HepTests where
import Testing

import Hep

main = dotests "HepTests $Revision: 1.2 $" tests

tests :: [TestCase [String]]
tests =

[(eqTest (hep []) "==" [])

,(eqTest (hep ["you","you","you","you"]) "==" ["u","u","u","u"])

,(eqTest (hep ["you","know","I","will","see","you","soon"])

"==" ["u","know","I'll","cya","soon"])

,(eqTest (hep ["by","the","way","you","must","see","my","girlfriend","she","is","great"])

"==" ["btw","u","must","see","my","gf","she","is","gr8"])

,(eqTest (hep (["for","your","information","you","are","a","pig"]

++ ["see","you","later","when","you","find","me","a","boyfriend"]))

"==" ["fyi","u","r","a","pig","cya","later","when","u","find","me","a","bf"])

,(eqTest (hep ["by","the","way","I","will","be","right","back"])

"==" ["btw","I'll","brb"])

]

Figure 10: Tests for problem 11.

BTW, we will take some number of points off if u have repeated code in ur solution. U can avoid
repeated code by using a helping function or a case-expression. A case-expression would be used in a
larger expression to form the result list, like: case w of

16

Iteration

12. (10 points) [UseModels]

In Haskell, using tail recursion, write a polymorphic function

listMin :: (Ord a) => [a] -> a

that takes a non-empty, finite list, lst, whose elements can be compared (hence the requirement in the
type that a is an Ord instance), and returns a minimal element from lst. That is, the result should be an
element of lst that is not larger than any other element of lst.

Although you are allowed to use the standard min function, your code must not use any other library
functions.

In your code, you can assume that the argument list is non-empty and finite. There are test cases
contained in ListMinTests.hs, which is shown in Figure 11.

Note: your solution must use tail recursion.

-- $Id: ListMinTests.hs,v 1.1 2013/08/22 18:09:10 leavens Exp $

module ListMinTests where
import Testing

import ListMin

main = do startTesting "ListMinTests $Revision: 1.1 $"

errs <- run_test_list 0 tests_ints

total <- run_test_list errs tests_chars

doneTesting total

tests_ints :: [TestCase Int]
tests_ints =

[(eqTest (listMin (1:1:1:1:1:[])) "==" 1)

,(eqTest (listMin (26:[])) "==" 26)

,(eqTest (listMin (1:[])) "==" 1)

,(eqTest (listMin (1:26:[])) "==" 1)

,(eqTest (listMin (26:1:[])) "==" 1)

,(eqTest (listMin (1:2:3:4:1:3:5:26:27:[])) "==" 1)

,(eqTest (listMin (4:0:2:0:[])) "==" 0)

,(eqTest (listMin (86:99:12:(-3):[])) "==" (-3))

,(eqTest (listMin (100000:8600000:12222:(-999999):[])) "==" (-999999))

]

tests_chars :: [TestCase Char]
tests_chars =

[

(eqTest (listMin "upqieurqoeiruazvzkpsau") "==" 'a')

,(eqTest (listMin "see haskell.org for more about Haskell") "==" ' ')

]

Figure 11: Tests for listMin.

As always, after writing your code, run our tests, and turn in your solution and the output of our tests as
specified on the first page of this homework.

17

13. (10 points) [UseModels] In Haskell, using tail recursion, write a polymorphic function

whatIndex :: (Eq a) => a -> [a] -> Integer

that takes an element of some Eq type, a, sought, and a finite list, lst, and returns the 0-based index of
the first occurrence of sought in lst. However, if sought does not occur in lst, it returns -1.

Your code must not use any library functions and must be tail recursive.

In your code, you can assume that the argument list is finite. There are test cases contained in
WhatIndexTests.hs, which is shown in Figure 12.

-- $Id: WhatIndexTests.hs,v 1.1 2013/08/22 19:37:47 leavens Exp leavens $

module WhatIndexTests where
import WhatIndex

import Testing

main = dotests "WhatIndexTests $Revision: 1.1 $" tests

tests :: [TestCase Integer]
tests =

[(eqTest (whatIndex 3 []) "==" (-1))

,(eqTest (whatIndex 2 [1,2,3,2,1]) "==" 1)

,(eqTest (whatIndex 'a' ['a' .. 'z']) "==" 0)

,(eqTest (whatIndex 'b' ['a' .. 'z']) "==" 1)

,(eqTest (whatIndex 'c' ['a' .. 'z']) "==" 2)

,(eqTest (whatIndex 'q' ['a' .. 'z']) "==" 16)

,(eqTest (whatIndex (41,'c') [(42,'c'),(43,'c'),(41,'c'),(3,'c')])

"==" 2)

,(eqTest (whatIndex True [False,False,False]) "==" (-1))

,(eqTest (whatIndex True [False,False,False,True]) "==" 3)

,(eqTest (whatIndex True [True,False,False,False]) "==" 0)

,(eqTest (whatIndex True [True,True,True]) "==" 0)

,(eqTest (whatIndex 1000 [1 .. 4000]) "==" 999)

]

Figure 12: Tests for WhatIndex.

As always, after writing your code, run our tests, and turn in your solution and the output of our tests as
specified on the first page of this homework.

Points
This homework’s total points: 160.

References
[Lea13] Gary T. Leavens. Following the grammar with Haskell. Technical Report CS-TR-13-01, Dept. of

EECS, University of Central Florida, Orlando, FL, 32816-2362, January 2013.

[Tho11] Simon Thompson. Haskell: the craft of functional programming. Addison-Wesley, Harlow,
England, third edition, 2011.

